
Decision Problems for Additive Regular Functions

Rajeev Alur Mukund Raghothaman

University of Pennsylvania

Friday 12th July, 2013

What are we studying?

Cost register automata

Regular functions

from Σ∗ to integers Z
Languages, Σ∗ → bool DFA
String transductions, Σ∗ → Γ∗ SST
Numerical functions, Σ∗ → Z

What are we studying?

Cost register automata

Regular functions

from Σ∗ to integers Z

Languages, Σ∗ → bool

DFA
String transductions, Σ∗ → Γ∗ SST
Numerical functions, Σ∗ → Z

What are we studying?

Cost register automata

Regular functions

from Σ∗ to integers Z

Languages, Σ∗ → bool DFA

String transductions, Σ∗ → Γ∗ SST
Numerical functions, Σ∗ → Z

What are we studying?

Cost register automata

Regular functions

from Σ∗ to integers Z

Languages, Σ∗ → bool DFA
String transductions, Σ∗ → Γ∗ SST

Numerical functions, Σ∗ → Z

What are we studying?

Cost register automata

Regular functions from Σ∗ to integers Z
Languages, Σ∗ → bool DFA
String transductions, Σ∗ → Γ∗ SST
Numerical functions, Σ∗ → Z ?

Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

start

C/2

S

#

C/1

S#

I Intuitive, analyzable
I But not very expressive. . .

Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

start

C/2 S

#

C/1

S#

I Intuitive, analyzable
I But not very expressive. . .

Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

start

C/2 S

#

C/1

S#

I Intuitive, analyzable

I But not very expressive. . .

Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

start

C/2 S

#

C/1

S#

I Intuitive, analyzable
I But not very expressive. . .

Regular Functions
Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already
purchased?

I Not possible if costs are paid up front
I Cost of an event cannot be influenced by later events

Solution?

Registers!

Regular Functions
Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already
purchased?

I Not possible if costs are paid up front
I Cost of an event cannot be influenced by later events

Solution?

Registers!

Regular Functions
Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already
purchased?

I Not possible if costs are paid up front
I Cost of an event cannot be influenced by later events

Solution? Registers!

Regular Functions / Cost Register Automata
Modelling a coffee shop: Attempt 2

q¬S

xstart
qS

x

C
/

x := x + 2
y := y + 1

S/x := y

#/y := x

C/x := x + 1

S
#/y := x

Regular Functions / Cost Register Automata
Properties, or why they’re interesting

I Closure under linear combination, input reversal, etc.

f rev defined as f rev (σ) = f (σrev) is regular when f is

I Fast equivalence procedure, decidable containment
I Equivalent to regular string-to-expression-tree transducers

abbbaaa . . . bba
2 2 2 2

+

+ +

+

3 3

+

I Connections to weighted automata

Regular Functions / Cost Register Automata
Properties, or why they’re interesting

I Closure under linear combination, input reversal, etc.
f rev defined as f rev (σ) = f (σrev) is regular when f is

I Fast equivalence procedure, decidable containment
I Equivalent to regular string-to-expression-tree transducers

abbbaaa . . . bba
2 2 2 2

+

+ +

+

3 3

+

I Connections to weighted automata

Regular Functions / Cost Register Automata
Properties, or why they’re interesting

I Closure under linear combination, input reversal, etc.
f rev defined as f rev (σ) = f (σrev) is regular when f is

I Fast equivalence procedure, decidable containment
I Equivalent to regular string-to-expression-tree transducers

abbbaaa . . . bba
2 2 2 2

+

+ +

+

3 3

+

I Connections to weighted automata

Regular Functions / Cost Register Automata
Properties, or why they’re interesting

I Closure under linear combination, input reversal, etc.
f rev defined as f rev (σ) = f (σrev) is regular when f is

I Fast equivalence procedure, decidable containment
I Equivalent to regular string-to-expression-tree transducers

abbbaaa . . . bba
2 2 2 2

+

+ +

+

3 3

+

I Connections to weighted automata

What are we studying?

Cost register automata

Regular functions from Σ∗ to integers Z
Languages, Σ∗ → bool DFA
String transductions, Σ∗ → Γ∗ SST
Numerical functions, Σ∗ → Z ?

What are we studying?
Cost register automata

Regular functions from Σ∗ to integers Z
Languages, Σ∗ → bool DFA
String transductions, Σ∗ → Γ∗ SST
Numerical functions, Σ∗ → Z CRA

Motivating Question: How do we Compute the
Register Complexity?

Motivating Question
Register complexity

Does the coffee shop CRA really need 2 registers?

q¬S

xstart
qS

x

C
/

x := x + 2
y := y + 1

S/x := y

#/y := x

C/x := x + 1

S
#/y := x

Register Separation

Register Separation
Confessions of a coffee addict

I Pick a large number, say c = 1, 000, 000

I Observe what happens after processing C c = CC . . .C
I |x − y | ≥ c

q¬S

xstart
qS

x

C
/

x := x + 2
y := y + 1

S/x := y

#/y := x

C/x := x + 1

S
#/y := x

Register Separation
Confessions of a coffee addict

I Pick a large number, say c = 1, 000, 000
I Observe what happens after processing C c = CC . . .C

I |x − y | ≥ c

q¬S

xstart
qS

x

C
/

x := x + 2
y := y + 1

S/x := y

#/y := x

C/x := x + 1

S
#/y := x

Register Separation
Confessions of a coffee addict

I Pick a large number, say c = 1, 000, 000
I Observe what happens after processing C c = CC . . .C
I |x − y | ≥ c

q¬S

xstart
qS

x

C
/

x := x + 2
y := y + 1

S/x := y

#/y := x

C/x := x + 1

S
#/y := x

Register Separation

I In general, for each c , there is a path to q¬S so |x − y | ≥ c
I No 1-register machine can make up these arbitrary differences in finite

time

Register Separation
Generalizing to k registers

I Pick a state q, and k registers
I Say, for each c , there is a string to q so every pair is at least c apart

v1

v2

v3

v4

. . .

vk

≥ c

I Then k registers are really necessary

Register Separation

Establishing the Converse

Register Separation
Establishing the converse

Claim
If the registers are not k-separable, then k − 1 registers suffice

Non-

Separation:

∃c , ∀σ,
∧
q

∨
u,v

|u − v | < c

Register Separation
Establishing the converse

Claim
If the registers are not k-separable, then k − 1 registers suffice

Non-

Separation: ∃q, ∀c , ∃σ, ∀u, v , |u − v |≥c

∃c , ∀σ,
∧
q

∨
u,v

|u − v | < c

Register Separation
Establishing the converse

Claim
If the registers are not k-separable, then k − 1 registers suffice

Non-Separation: ∀q, ∃c , ∀σ, ∃u, v , |u − v |<c

∃c , ∀σ,
∧
q

∨
u,v

|u − v | < c

Register Separation
Establishing the converse

Claim
If the registers are not k-separable, then k − 1 registers suffice

Non-Separation: ∃c , ∀q, ∀σ, ∃u, v , |u − v |<c

∃c , ∀σ,
∧
q

∨
u,v

|u − v | < c

Register Separation
Establishing the converse

Claim
If the registers are not k-separable, then k − 1 registers suffice

Non-Separation: ∃c , ∀σ, ∀q, ∃u, v , |u − v |<c

∃c , ∀σ,
∧
q

∨
u,v

|u − v | < c

Register Separation
Establishing the converse

Claim
If the registers are not k-separable, then k − 1 registers suffice

Non-Separation: ∃c , ∀σ, ∀q, ∃u, v , |u − v |<c

∃c , ∀σ,
∧
q

∨
u,v

|u − v | < c

Register Separation
Establishing the converse

Claim
If the registers are not k-separable, then k − 1 registers suffice

Non-Separation: ∃c , ∀σ, ∀q, ∃u, v , |u − v |<c

∃c , ∀σ,
∧
q

∨
u,v

|u − v | < c

Register Separation
Establishing the converse

∃c ,∀σ,
∧
q

∨
u,v

|u − v | < c

(q′, 〈_,_〉 ,_)

u′ := u′′ + 2
v ′ := v ′′ + 3

(−c + 1 < u′′ − v ′′ < c) ∨ . . . (−c < u′ − v ′ < c) ∨ . . .

I Says u − v = duv , where −c < duv < c
I Wherever we see “v ”, replace with “u − duv ”

Register Separation
Establishing the converse

∃c ,∀σ,
∧
q

∨
u,v

|u − v | < c

(q, 〈u, v〉 , duv)

(q′, 〈_,_〉 ,_)

u′ := u′′ + 2
v ′ := v ′′ + 3

(−c + 1 < u′′ − v ′′ < c) ∨ . . . (−c < u′ − v ′ < c) ∨ . . .

I Says u − v = duv , where −c < duv < c
I Wherever we see “v ”, replace with “u − duv ”

Register Separation
Establishing the converse

∃c ,∀σ,
∧
q

∨
u,v

|u − v | < c

(q, 〈u, v〉 , duv) (q′, 〈_,_〉 ,_)

u′ := u′′ + 2
v ′ := v ′′ + 3

(−c + 1 < u′′ − v ′′ < c) ∨ . . . (−c < u′ − v ′ < c) ∨ . . .

I Says u − v = duv , where −c < duv < c
I Wherever we see “v ”, replace with “u − duv ”

Register Separation
Establishing the converse

∃c ,∀σ,
∧
q

∨
u,v

|u − v | < c

(q, 〈u, v〉 , duv) (q′, 〈_,_〉 ,_)

u′ := u′′ + 2
v ′ := v ′′ + 3

(−c + 1 < u′′ − v ′′ < c) ∨ . . .

(−c < u′ − v ′ < c) ∨ . . .

I Says u − v = duv , where −c < duv < c
I Wherever we see “v ”, replace with “u − duv ”

Register Separation
Establishing the converse

∃c ,∀σ,
∧
q

∨
u,v

|u − v | < c

(q, 〈u, v〉 , duv) (q′, 〈_,_〉 ,_)

u′ := u′′ + 2
v ′ := v ′′ + 3

(−c + 1 < u′′ − v ′′ < c) ∨ . . .

(−c < u′ − v ′ < c) ∨ . . .

I Says u − v = duv , where −c < duv < c
I Wherever we see “v ”, replace with “u − duv ”

Register Separation
Establishing the converse

∃c ,∀σ,
∧
q

∨
u,v

|u − v | < c

(q, 〈u, v〉 , duv) (q′, 〈_,_〉 ,_)

u′ := u′′ + 2
v ′ := v ′′ + 3

(−c + 1 < u′′ − v ′′ < c) ∨ . . . (−c < u′ − v ′ < c) ∨ . . .

I Says u − v = duv , where −c < duv < c
I Wherever we see “v ”, replace with “u − duv ”

Register Separation
Establishing the converse

∃c ,∀σ,
∧
q

∨
u,v

|u − v | < c

(
q,
{

〈u, v〉 , duv
〈u′′, v ′′〉 , du′′v ′′

})
(q′, 〈_,_〉 ,_)

u′ := u′′ + 2
v ′ := v ′′ + 3

(−c + 1 < u′′ − v ′′ < c) ∨ . . . (−c < u′ − v ′ < c) ∨ . . .

I Inductive backpropagation!
I Invariants maintained in DNF form

Register Separation
Establishing the converse

∃c ,∀σ,
∧
q

∨
u,v

|u − v | < c

(
q,
{

〈u, v〉 , duv
〈u′′, v ′′〉 , du′′v ′′

})
(q′, 〈u′, v ′〉 , du′′v ′′ − 1)

u′ := u′′ + 2
v ′ := v ′′ + 3

(−c + 1 < u′′ − v ′′ < c) ∨ . . . (−c < u′ − v ′ < c) ∨ . . .

I Inductive backpropagation!
I Invariants maintained in DNF form

Register Separation
Establishing the converse

INV (q) := INV (q) ∧ WP (INV (q′) , τ)

q q′
τ

Repeat at each transition τ until fixpoint

Claim
A fixpoint will eventually be reached

Register Separation
Establishing the converse

INV (q) := INV (q) ∧ WP (INV (q′) , τ)

q q′
τ

Repeat at each transition τ until fixpoint

Claim
A fixpoint will eventually be reached

Register Separation
Establishing the converse

INV (q) := INV (q) ∧ WP (INV (q′) , τ)

q q′
τ

Repeat at each transition τ until fixpoint

Claim
A fixpoint will eventually be reached

Register Separation
Final result

Theorem
The register complexity is at least k iff the registers are k-separable

Theorem
Computing the register complexity is PSPACE-complete

Register Separation
Final result

Theorem
The register complexity is at least k iff the registers are k-separable

Theorem
Computing the register complexity is PSPACE-complete

Conclusion

Conclusion
What we talked about

I Described CRAs as a model for regular functions
I Introduced register separation in CRAs
I Outlined connection between separation and register complexity

Conclusion
What we didn’t talk about, i.e. what else is in the paper

I Machine-independent characterization of the register complexity
I Analysis of adversarial games over CRAs – optimal reachability

Undecidable when domain is Z
EXPTIME-complete when domain is N

I Proofs!

Conclusion
What’s left to do

I Understanding register separation in models with binary addition,
SSTs, etc.

I Optimal reachability in probabilistic variants
I Variants for ω-strings / trees / . . .

Thank you! Questions?

Reserve Slides

Reserve Slides

Gotchas

Gotchas
Bounded registers

I Definition engineering; claims remain true in spirit
I Consider hypothetical “constant-0” register

Gotchas
Domain of computation / Algebraic structure “+”

I Paper assumes Z; also holds for N
I Free algorithm for Q: The rationals admit a notion of “GCD”

Conjecture

I Similar results hold for R as well
I Can be easily generalized to any commutative group

Reserve Slides

Weighted automata

Regular Functions / Cost Register Automata
Connection to weighted automata

Use non-determinism!

Regular Functions / Cost Register Automata
Connection to weighted automata

Use non-determinism!

start

C/1

C
/2

S

#

C/1

S

C/1

S

#

C/2

#

Regular Functions / Cost Register Automata
Connection to weighted automata

I CRAs are equivalent to unambiguous WA
I CRA (min,+c) equivalent to (full) WA

x := min (x , y), y := z + 3
I Weighted automata are inherently non-deterministic

Fin!

	Introduction
	Motivating Question: How do we Compute the Register Complexity?
	Register Separation
	Establishing the Converse

	Conclusion
	Appendix
	Reserve Slides
	Gotchas
	Weighted automata

