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Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

start

C/2

S

#

C/1

S#

I Intuitive, analyzable
I But not very expressive. . .
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I Not possible if costs are paid up front
I Cost of an event cannot be influenced by later events
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Regular Functions / Cost Register Automata
Modelling a coffee shop: Attempt 2

q¬S

xstart
qS

x

C
/

x := x + 2
y := y + 1

S/x := y

#/y := x

C/x := x + 1

S
#/y := x



Regular Functions / Cost Register Automata
Properties, or why they’re interesting

I Closure under linear combination, input reversal, etc.

f rev defined as f rev (σ) = f (σrev ) is regular when f is

I Fast equivalence procedure, decidable containment
I Equivalent to regular string-to-expression-tree transducers
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Motivating Question: How do we Compute the
Register Complexity?



Motivating Question
Register complexity

Does the coffee shop CRA really need 2 registers?
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Confessions of a coffee addict

I Pick a large number, say c = 1, 000, 000

I Observe what happens after processing C c = CC . . .C
I |x − y | ≥ c
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Register Separation

I In general, for each c , there is a path to q¬S so |x − y | ≥ c
I No 1-register machine can make up these arbitrary differences in finite

time



Register Separation
Generalizing to k registers

I Pick a state q, and k registers
I Say, for each c , there is a string to q so every pair is at least c apart

v1

v2

v3

v4

. . .

vk

≥ c

I Then k registers are really necessary



Register Separation

Establishing the Converse
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I Says u − v = duv , where −c < duv < c
I Wherever we see “v ”, replace with “u − duv ”
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Repeat at each transition τ until fixpoint
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A fixpoint will eventually be reached
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Conclusion
What we talked about

I Described CRAs as a model for regular functions
I Introduced register separation in CRAs
I Outlined connection between separation and register complexity



Conclusion
What we didn’t talk about, i.e. what else is in the paper

I Machine-independent characterization of the register complexity
I Analysis of adversarial games over CRAs – optimal reachability

Undecidable when domain is Z
EXPTIME-complete when domain is N

I Proofs!



Conclusion
What’s left to do

I Understanding register separation in models with binary addition,
SSTs, etc.

I Optimal reachability in probabilistic variants
I Variants for ω-strings / trees / . . .



Thank you! Questions?
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Gotchas
Bounded registers

I Definition engineering; claims remain true in spirit
I Consider hypothetical “constant-0” register



Gotchas
Domain of computation / Algebraic structure “+”

I Paper assumes Z; also holds for N
I Free algorithm for Q: The rationals admit a notion of “GCD”

Conjecture

I Similar results hold for R as well
I Can be easily generalized to any commutative group



Reserve Slides
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Regular Functions / Cost Register Automata
Connection to weighted automata

I CRAs are equivalent to unambiguous WA
I CRA (min,+c) equivalent to (full) WA

x := min (x , y), y := z + 3
I Weighted automata are inherently non-deterministic



Fin!
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