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Finite automata with cost labels, a la Mealy machines

c/2 c/1

start

» Intuitive, analyzable

» But not very expressive. . .
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Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already
purchased?

» Not possible if costs are paid up front

» Cost of an event cannot be influenced by later events

Solution? Registers!
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Modelling a coffee shop: Attempt 2
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» Fast equivalence procedure, decidable containment
» Equivalent to regular string-to-expression-tree transducers
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Regular Functions / Cost Register Automata

Properties, or why they're interesting

v

Closure under linear combination, input reversal, etc.
e defined as ™ (¢0) = f (0"") is regular when f is

Fast equivalence procedure, decidable containment

v

v

Equivalent to regular string-to-expression-tree transducers
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Connections to weighted automata
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What are we studying?

Cost register automata

Regular functions from ¥* to integers Z

Languages, ¥* — bool DFA
String transductions, ¥* — I SST
Numerical functions, ¥* — Z CRA



Motivating Question: How do we Compute the
Register Complexity?



Motivating Question

Register complexity

Does the coffee shop CRA really need 2 registers?

/X::x+2
& = 1
y =y _ C/x:=x+1
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» Pick a large number, say ¢ = 1,000, 000
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Register Separation

Confessions of a coffee addict

» Pick a large number, say ¢ = 1,000, 000

» Observe what happens after processing C< = CC...C
> x—yl=c

C/ Xi=Xx-+2

y=y+1




Register Separation

» In general, for each ¢, there is a path to g—s so [x — y| > ¢

» No 1-register machine can make up these arbitrary differences in finite
time



Register Separation

Generalizing to k registers

» Pick a state g, and k registers
» Say, for each c, there is a string to g so every pair is at least ¢ apart
Vi
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Vk V2
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Z!

» Then k registers are really necessary
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Establishing the converse

Claim

If the registers are not k-separable, then k — 1 registers suffice

Non-Separation:  Jc, Vo, Vq, Ju, v, |u— v|<c

3C,‘V’a,/\\/|u—v| <c

q u,v
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q u,v
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Establishing the converse
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Register Separation

Establishing the converse

EIC,VU,/\\/|u—v| <c

q u,v

ui=u"+2

/oI
<U,V>, duv v =V +3 , , ,
- 10—
(q,{ <UN,V”>, dyr (q7(u7v>,duv ]_)
(—c+l<v' —V'<c)V...&——(—c<U -V <)V...

» Inductive backpropagation!

» Invariants maintained in DNF form
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Register Separation

Establishing the converse

INV(q) := INV(q) AWP(INV(q'),T)

(D)
Repeat at each transition 7 until fixpoint

Claim

A fixpoint will eventually be reached
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Final result

Theorem
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Register Separation

Final result

Theorem

The register complexity is at least k iff the registers are k-separable

Theorem

Computing the register complexity is PSPACE-complete
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Conclusion
What we talked about

» Described CRAs as a model for regular functions
» Introduced register separation in CRAs

» Qutlined connection between separation and register complexity



Conclusion
What we didn’t talk about, i.e. what else is in the paper

» Machine-independent characterization of the register complexity

» Analysis of adversarial games over CRAs — optimal reachability
Undecidable when domain is Z
EXPTIME-complete when domain is N

» Proofs!



Conclusion
What's left to do

» Understanding register separation in models with binary addition,
SSTs, etc.
» Optimal reachability in probabilistic variants

» Variants for w-strings / trees / ...



Thank you! Questions?
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Reserve Slides

Gotchas



Gotchas

Bounded registers

» Definition engineering; claims remain true in spirit

» Consider hypothetical “constant-0" register



Gotchas

Domain of computation / Algebraic structure “+"

» Paper assumes Z; also holds for N
» Free algorithm for Q: The rationals admit a notion of “GCD”

Conjecture

» Similar results hold for R as well

» Can be easily generalized to any commutative group



Reserve Slides

Weighted automata
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Regular Functions / Cost Register Automata

Connection to weighted automata

» CRAs are equivalent to unambiguous WA

» CRA (min, +c) equivalent to (full) WA
x:=min(x,y), y :=z+3

» Weighted automata are inherently non-deterministic



Finl
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