Decision Problems for Additive Regular Functions

Rajeev Alur Mukund Raghothaman

University of Pennsylvania

Friday 12t July, 2013

What are we studying?

Regular functions

What are we studying?

Regular functions
Languages, ¥* — bool

What are we studying?

Regular functions
Languages, ¥* — bool DFA

What are we studying?

Regular functions

Languages, ¥* — bool DFA
String transductions, ¥* — I SST

What are we studying?

Regular functions from ¥* to integers Z

Languages, ¥* — bool DFA
String transductions, ¥* — I SST
Numerical functions, X* — Z ?

Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

c/2

start

Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

c/2 c/1

start

Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

c/2 c/1

start

» Intuitive, analyzable

Regular Functions
Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

c/2 c/1

start

» Intuitive, analyzable

» But not very expressive. . .

Regular Functions
Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already
purchased?

» Not possible if costs are paid up front

» Cost of an event cannot be influenced by later events

Regular Functions
Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already
purchased?

» Not possible if costs are paid up front

» Cost of an event cannot be influenced by later events

Solution?

Regular Functions
Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already
purchased?

» Not possible if costs are paid up front

» Cost of an event cannot be influenced by later events

Solution? Registers!

Regular Functions / Cost Register Automata

Modelling a coffee shop: Attempt 2

u]
8]
I
i
iht
n

Regular Functions / Cost Register Automata

Properties, or why they're interesting

» Closure under linear combination, input reversal, etc.

» Fast equivalence procedure, decidable containment
» Equivalent to regular string-to-expression-tree transducers

Regular Functions / Cost Register Automata

Properties, or why they're interesting

» Closure under linear combination, input reversal, etc.
e defined as ™ (¢0) = f (0"") is regular when f is

» Fast equivalence procedure, decidable containment

» Equivalent to regular string-to-expression-tree transducers

Regular Functions / Cost Register Automata

Properties, or why they're interesting

» Closure under linear combination, input reversal, etc.
e defined as ™ (¢0) = f (0"") is regular when f is
» Fast equivalence procedure, decidable containment
» Equivalent to regular string-to-expression-tree transducers
O

] O]
abbbaaa . .. bba d wd B

@00

Regular Functions / Cost Register Automata

Properties, or why they're interesting

v

Closure under linear combination, input reversal, etc.
e defined as ™ (¢0) = f (0"") is regular when f is

Fast equivalence procedure, decidable containment

v

v

Equivalent to regular string-to-expression-tree transducers
@
O] O
H ® O
ofololo)

abbbaaa . .. bba

v

Connections to weighted automata

What are we studying?

Regular functions from ¥* to integers Z

Languages, ¥* — bool DFA
String transductions, ¥* — I SST
Numerical functions, X* — Z ?

What are we studying?

Cost register automata

Regular functions from ¥* to integers Z

Languages, ¥* — bool DFA
String transductions, ¥* — I SST
Numerical functions, ¥* — Z CRA

Motivating Question: How do we Compute the
Register Complexity?

Motivating Question

Register complexity

Does the coffee shop CRA really need 2 registers?

/X::x+2
& = 1
y =y _ C/x:=x+1

Register Separation

Register Separation

Confessions of a coffee addict

» Pick a large number, say ¢ = 1,000, 000

Register Separation

Confessions of a coffee addict

» Pick a large number, say ¢ = 1,000, 000
» Observe what happens after processing C< = CC...C

u]
8]
I
i
iht
n

Register Separation

Confessions of a coffee addict

» Pick a large number, say ¢ = 1,000, 000

» Observe what happens after processing C< = CC...C
> x—yl=c

C/ Xi=Xx-+2

y=y+1

Register Separation

» In general, for each ¢, there is a path to g—s so [x — y| > ¢

» No 1-register machine can make up these arbitrary differences in finite
time

Register Separation

Generalizing to k registers

» Pick a state g, and k registers
» Say, for each c, there is a string to g so every pair is at least ¢ apart
Vi

PR

Vk V2

| >

Z!

» Then k registers are really necessary

Register Separation

Establishing the Converse

Register Separation

Establishing the converse

Claim

If the registers are not k-separable, then k — 1 registers suffice

Register Separation

Establishing the converse

Claim

If the registers are not k-separable, then k — 1 registers suffice

Separation: g, V¢, Jo, Yu, v, |u— v|>c

Register Separation

Establishing the converse

Claim

If the registers are not k-separable, then k — 1 registers suffice

Non-Separation: Vg, 3c, Vo, Ju, v, |u— v|<c

Register Separation

Establishing the converse

Claim

If the registers are not k-separable, then k — 1 registers suffice

Non-Separation: Jc, Vq, Vo, Ju, v, |u— v|<c

Register Separation

Establishing the converse

Claim

If the registers are not k-separable, then k — 1 registers suffice

Non-Separation: Jc, Vo, Vq, Ju, v, |u— v|<c

Register Separation

Establishing the converse

Claim

If the registers are not k-separable, then k — 1 registers suffice

Non-Separation: Jc, Vo, Vq, Ju, v, |u— v|<c

Register Separation

Establishing the converse

Claim

If the registers are not k-separable, then k — 1 registers suffice

Non-Separation: Jc, Vo, Vq, Ju, v, |u— v|<c

3C,‘V’a,/\\/|u—v| <c

q u,v

Register Separation

Establishing the converse

Elc,‘v’a,/\\/|u—v| <c

q u,v

Register Separation

Establishing the converse

Elc,‘v’a,/\\/|u—v| <c

q u,v

(g, (u,v) , duy)

» Says u—v =d,,, where —c < d,, < c

» Wherever we see “v", replace with “v — d,,

Register Separation

Establishing the converse

Elc,‘v’a,/\\/|u—v| <c

q u,v

» Says u—v =d,,, where —c < d,, < c

» Wherever we see “v", replace with “v — d,,

Register Separation

Establishing the converse

Elc,‘v’a,/\\/|u—v| <c

q u,v

(—e<v =V <c)v...

» Says u—v =d,,, where —c < d,, < c

» Wherever we see “v", replace with “v — d,,

Register Separation

Establishing the converse

Elc,‘v’a,/\\/|u—v| <c

q uyv
ui=u"+2
vi=v"+3

(Qa <U7 V>) duv) e (q/v <_v _>) _)

(—e<v =V <c)v...

» Says u—v =d,,, where —c < d,, < c

» Wherever we see “v", replace with “u — d,,"

Register Separation

Establishing the converse

Elc,‘v’a,/\\/|u—v| <c

q uyv
ui=u"+2
vi=v"+3

(Qa <U7 V>) duv) e (q/v <_v _>) _)

(—c+l<d' —Vv'<c)V...&———(—c<u -V <c)V...

» Says u—v =d,,, where —c < d,, < c

» Wherever we see “v", replace with “v — d,,

Register Separation

Establishing the converse

EIC,VU,/\\/|u—v| <c

q uv
ui=u"+2

(qj{ <u<u, V), du }) o @,),)

/! 1!
y \% > s du//V//

(—c+l<d' —v'<c)V...&————(—c<u -V <c)V...

» Inductive backpropagation!
» |nvariants maintained in DNF form

Register Separation

Establishing the converse

EIC,VU,/\\/|u—v| <c

q u,v

ui=u"+2

/oI
<U,V>, duv v =V +3 , , ,
- 10—
(q,{ <UN,V”>, dyr (q7(u7v>,duv]_)
(—c+l<v' —V'<c)V...&——(—c<U -V <)V...

» Inductive backpropagation!

» Invariants maintained in DNF form

Register Separation

Establishing the converse

Register Separation

Establishing the converse

INV(q) := INV(q) AWP(INV(q'),T)

Repeat at each transition 7 until fixpoint

Register Separation

Establishing the converse

INV(q) := INV(q) AWP(INV(q'),T)

(D)
Repeat at each transition 7 until fixpoint

Claim

A fixpoint will eventually be reached

Register Separation

Final result

Theorem

The register complexity is at least k iff the registers are k-separable

Register Separation

Final result

Theorem

The register complexity is at least k iff the registers are k-separable

Theorem

Computing the register complexity is PSPACE-complete

Conclusion

u]
8]
I
i
iht
n

Conclusion
What we talked about

» Described CRAs as a model for regular functions
» Introduced register separation in CRAs

» Qutlined connection between separation and register complexity

Conclusion
What we didn’t talk about, i.e. what else is in the paper

» Machine-independent characterization of the register complexity

» Analysis of adversarial games over CRAs — optimal reachability
Undecidable when domain is Z
EXPTIME-complete when domain is N

» Proofs!

Conclusion
What's left to do

» Understanding register separation in models with binary addition,
SSTs, etc.
» Optimal reachability in probabilistic variants

» Variants for w-strings / trees / ...

Thank you! Questions?

Reserve Slides

u]
8]
I
i
iht
n

Reserve Slides

Gotchas

Gotchas

Bounded registers

» Definition engineering; claims remain true in spirit

» Consider hypothetical “constant-0" register

Gotchas

Domain of computation / Algebraic structure “+"

» Paper assumes Z; also holds for N
» Free algorithm for Q: The rationals admit a notion of “GCD”

Conjecture

» Similar results hold for R as well

» Can be easily generalized to any commutative group

Reserve Slides

Weighted automata

Regular Functions / Cost Register Automata

Connection to weighted automata

Use non-determinism!

Regular Functions / Cost Register Automata

Connection to weighted automata

Use non-determinism!

Regular Functions / Cost Register Automata

Connection to weighted automata

» CRAs are equivalent to unambiguous WA

» CRA (min, +c) equivalent to (full) WA
x:=min(x,y), y :=z+3

» Weighted automata are inherently non-deterministic

Finl

	Introduction
	Motivating Question: How do we Compute the Register Complexity?
	Register Separation
	Establishing the Converse

	Conclusion
	Appendix
	Reserve Slides
	Gotchas
	Weighted automata

