
Regular Combinators for String Transformations

Rajeev Alur Adam Freilich Mukund Raghothaman

CSL-LICS, 2014



Our Goal

Languages, Σ∗ → bool ≡ Regular expressions
Tranformations, Σ∗ → Γ∗ ≡ ?



String Transformations
. . . are all over the place

I Find and replace
Rename variable foo to bar

I Spreadsheet macros
Convert phone numbers like “(123) 456-7890” to
“123-456-7890”

I String sanitization
I . . .



String Transformations
Tool and theory support

I Good tool support: sed, AWK, Perl, domain-specific tools, . . .
I Renewed interest: Recent transducer-based tools such as Bek,

Flash-Fill, . . .
I But unsatisfactory theory . . .
I Expressibility: Can I express 〈favorite transformation〉 using
〈favorite tool〉?

I Analysis questions:
I Is the transformation well-defined for all inputs?
I Does the output always have some “nice” property?
∀σ, is it the case that f (σ) ∈ L?

I Are two transformations equivalent?



Historical Context
Regular languages

Beautiful theory

Regular expressions ≡ DFA

Analysis questions (mostly) efficiently decidable

Lots of practical implementations



String Transducers

One-way transducers: Mealy machines
a/babc

Folk knowledge [Aho et al 1969]
Two-way transducers strictly more powerful than one-way transducers

Gap includes many transformations of interest
Examples: string reversal, copy, substring swap, etc.



Regular String Transformations

I Two-way finite state transducers are our notion of regularity
I Known results

I Closed under composition [Chytil, Jákl 1977]
I Decidable equivalence checking [Gurari 1980]
I Equivalent to MSO-definable string transformations [Engelfriet,

Hoogeboom 2001]

I Recent result: Equivalent one-way deterministic model with
applications to the analysis of list-processing programs [Alur,
Černý 2011]



Streaming String Transducers (SST)

x
start

y

a

/
x := ax
y := y b

/
x := bx
y := yb

a

/
x := ax
y := y

b

/
x := bx
y := yb

If input ends with a b, then delete all a-s, else reverse

I x contains the reverse of the input string seen so far
I y contains the list of b-s read so far



Streaming String Transducers (SST)

x
start

y

a

/
x := ax
y := y b

/
x := bx
y := yb

a

/
x := ax
y := y

b

/
x := bx
y := yb

I Finitely many locations
I Finite set of registers
I Transitions test-free
I Registers concatenated (copyless updates only)
I Final states associated with registers (output functions)



Regular String Transformations
Rephrasing our goal

Languages, DFA ≡ Regular expressions
Tranformations, SST ≡ ?



Can we Find an Equivalent Regex-like
Characterization?

Motivation
I Theoretical: To understand regular functions
I Practical: As the basis for a domain-specific language for string

transformations



Base functions: R 7→ γ

If σ ∈ L(R), then γ, and otherwise undefined

({“.c”} ∪ {“.cpp”}) 7→ “.cpp”

Analogue of basic regular expressions: {a}, for a ∈ Σ
R is a regular expression and γ is a constant



If-then-else: ite R f g

If σ ∈ L(R), then f (σ), and otherwise g(σ)

ite [0− 9]∗ (Σ∗ 7→ “Number”) (Σ∗ 7→ “Non-number”)

Analogue of unambiguous regex union



Split sum: split(f , g)

Split σ into σ = σ1σ2 with both f (σ1) and g(σ2) defined. If
the split is unambiguous then split(f , g)(σ) = f (σ1)g(σ2)

σ1 σ2

f (σ1) g(σ2)

f g

Analogue of regex concatenation



Iterated sum: iterate(f )

Split σ = σ1σ2 . . . σk , with all f (σi) defined. If the split is
unambiguous, then output f (σ1)f (σ2) . . . f (σk)

σ1 σ2 σk

f (σ1) f (σ2) f (σk)

f f f

I Kleene-*
I If echo echoes a single character, then iterate(echo) is the

identity function



Left-iterated sum: left-iterate(f )

Split σ = σ1σ2 . . . σk , with all f (σi) defined. If the split is
unambiguous, then output f (σk)f (σk−1) . . . f (σ1)

σ1 σk−1 σk

f (σk) f (σk−1) f (σ1)

Think of σ 7→ σrev : left-iterate(echo)



“Repeated” sum: combine(f , g)

combine(f , g)(σ) = f (σ)g(σ)

σ

f (σ) g(σ)

f g

I No regex equivalent
I σ 7→ σσ: combine(id , id)



Chained sum: chain(f ,R)

σ1 ∈ L(R) σ2 ∈ L(R) σ3 ∈ L(R) σk ∈ L(R)

f (σ1σ2) f (σ2σ3) f (σ3σ4) f (σk−1σk)

And similarly for left-chain(f ,R)



Function composition: f ◦ g

f ◦ g(σ) = f (g(σ))

σ g f f (g(σ))

Regular string transformations are closed under composition



Function Combinators are Expressively Complete

Theorem (Completeness)

All regular string transformations can be expressed using the
following combinators:

I Basic functions: a 7→ γ, ε 7→ γ, ⊥,
I ite R f g , split(f , g), combine(f , g), and
I chained sums: chain(f ,R), and left-chain(f ,R).



Function Combinators are Expressively Complete
Arbitrary monoids (D,⊗, 0)

I Functions Σ∗ → D for an arbitrary monoid (D,⊗, 0)

I All machinery still works: Function combinators remain
expressively complete
Base functions: a 7→ γ, ε 7→ γ, for γ ∈ D

I Strings (Γ∗, ·, ε) just a special case
I Monoid of discounted costs (cost, discount) ∈ R× [0, 1]

(c, d)⊗ (c ′, d ′) = (c + dc ′, dd ′)
Identity element: (0, 1)
Potentially useful for quantitative analysis



The Special Case of Commutative Monoids
Expressive completeness of function combinators

I Integers under addition (Z,+, 0), and integer-valued cost
functions Σ∗ → Z

I Example: Count number of a-s followed by b

split(b∗ 7→ 0, iterate(a+ · b+ 7→ 1), a∗ 7→ 0)

I Smaller set of combinators needed for expressive completeness
I Basic functions: a 7→ γ, ε 7→ γ, ⊥
I ite R f g , split(f , g), and
I iterate(f )

I Unnecessary combinators: combine(f , g), chain(f ,R),
left-chain(f ,R)



A Taste of the Proof

Broadly similar to DFA-to-Regex translation



A Taste of the Proof
Summmarize effect of (individual) strings

q

a

/ x := xy
y := a
z := zb

b

/ x := bxa
y := zy
z := a

q

ab

/ x := bxya
y := zba
z := a



A Taste of the Proof
Shapes

q

ab

/
x := bxya
y := ab

q

ba

/
x := bxa
y := yba

x := x y

y :=

γx1 γx2 γx3

γy1

x := x

y := y

γx1 γx2

γy1 γy2



A Taste of the Proof
Summarizing effect of (a set of) strings

“Summarize” = “Give expression for each patch”

x := x y

y :=

γx1 γx2 γx3

γy1



A Taste of the Proof
Piggyback on the Regex-to-DFA Translation Algorithm

Summarize all paths q → q′ with shape S

q q′

Qr ⊆ Q

Start with Qr = ∅ and iteratively add states until Qr = Q



A Taste of the Proof
Summarizing loops: Or why the chained sum is needed

q q q

x := xy
y := γ1

x := xy
y := γ2

Previous iteration This iteration

x

y

x

y

x

y

Value appended to x at the end of this loop iteration (γ1)
depends on value computed in y during the previous iteration
Chained sum



A Taste of the Proof
Recall the chained sum: chain(f ,R)

σ1 ∈ L(R) σ2 ∈ L(R) σ3 ∈ L(R) σk ∈ L(R)

f (σ1σ2) f (σ2σ3) f (σ3σ4) f (σk−1σk)



Conclusion

Introduced a declarative notation for regular string
transformations



Conclusion
Summary of operators

Purpose Regular Transformations Regular
Expressions

Base R 7→ γ {a}, for a ∈ Σ

Union ite R f g R1 ∪ R2

Concatenation split(f , g) R1 ·R2

Kleene-* iterate(f ) (also
left-iterate(f ))

R∗

Repetition combine(f , g)
New!Chained sum chain(f ,R) (and

left-chain(f ,R))
Composition f ◦ g



Future Work

I Design and implement a DSL for string transformations based
on these foundations

I Lower bounds on expressibility of certain functions
I Theory of regular functions

I Strings to numerical domains
I Strings to semirings
I Trees to trees / strings (Processing hierarchical data, XML

documents, etc.)
I ω-strings to strings

I Automatically learn transformations
I from input/output examples
I from teachers (L*)



Thank you! Questions?
Suggestions? Brickbats?


	Introduction
	Function Combinators
	Function Combinators are Expressively Complete
	A Taste of the Proof
	Conclusion

