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Abstract
We present DReX, a declarative language that can express all
regular string-to-string transformations, and can still be efficiently
evaluated. The class of regular string transformations has a robust
theoretical foundation including multiple characterizations, closure
properties, and decidable analysis questions, and admits a number
of string operations such as insertion, deletion, substring swap,
and reversal. Recent research has led to a characterization of
regular string transformations using a primitive set of function
combinators analogous to the definition of regular languages using
regular expressions. While these combinators form the basis for
the language DReX proposed in this paper, our main technical
focus is on the complexity of evaluating the output of a DReX
program on a given input string. It turns out that the natural
evaluation algorithm involves dynamic programming, leading to
complexity that is cubic in the length of the input string. Our
main contribution is identifying a consistency restriction on the
use of combinators in DReX programs, and a single-pass evaluation
algorithm for consistent programs with time complexity that is linear
in the length of the input string and polynomial in the size of the
program. We show that the consistency restriction does not limit the
expressiveness, and whether a DReX program is consistent can be
checked efficiently. We report on a prototype implementation, and
evaluate it using a representative set of text processing tasks.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Specialized application languages; F.1.1 [Theory of Compu-
tation]: Models of Computation, Automata

Keywords DReX, string transformations, declarative languages

1. Introduction
Programs that transform plain text are ubiquitous and used for many
different tasks, from reformatting documents to translating data
between different formats. String specific utilities such as sed, AWK,
and Perl have been used to query and reformat text files for many
years. Since these tools are Turing complete they can express very
complex transformations, however this comes at the cost of not being
amenable to algorithmic analysis. To address this issue, restricted
languages have been proposed in the context of verification of string
sanitizers [26] and string coders [13], and for the analysis and
optimization of list-manipulating programs [15]. These languages
build on variants of finite-state transducers, which are automata-
based representations of programs mapping strings to strings, and
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each of these languages supports different algorithmic analyses
that are enabled by the properties of the underlying transducer
model. Due to the focus on analyzability, expressiveness is a limiting
factor in all such languages and many programs, in particular those
that reorder input chunks, cannot be represented. Moreover, these
languages are not declarative and their semantics are tightly coupled
to the transducer model, forcing the programmer to reason in terms
of finite state machines and process the input left-to-right.

In the theory of string-to-string transformations the class of reg-
ular string transformations is a robust class that strikes a balance
between decidability and expressiveness. In particular this class
captures transformations that involve reordering of input chunks, it
is closed under composition [9], it has decidable equivalence [21],
and has several equivalent characterizations, such as one-way trans-
ducers with a finite set of write-only registers [1], two-way trans-
ducers [16] and monadic second-order definable graph transforma-
tions [10]. Recently Alur et al [3] proposed a set of combinators
that captures the class of regular string transformations. In [3] the
focus is on expressiveness and the paper does not provide an effi-
cient procedure to evaluate programs written with these combinators.
Efficient evaluation of such programs is the main focus of this paper.

Starting with the combinators presented in [3], we develop
DReX, an expressive declarative language to describe string transfor-
mations. The base combinator of DReX, ϕ 7→ d, maps any character
a that satisfies the predicate ϕ to the string d(a). This combinator
symbolically extends the one proposed in [3] with predicates and
can therefore succinctly model strings over large (and potentially
infinite) alphabets, such as Unicode. The other combinators sup-
ported by DReX are: (a) split(f, g) that unambiguously splits
the input string into two parts and outputs the concatenation of the
results obtained using f on the first part and g on the second part;
(b) iterate(f) that unambiguously splits the input string into mul-
tiple parts and outputs the concatenation of evaluating f on each
of such parts; (c) combine(f, g) that applies both f and g to the
input string and concatenates the obtained results; (d) the condi-
tional f else g that first tries to apply f to the input and if f cannot
be applied it applies g; (e) chain(f,R) that unambiguously splits
the string into multiple parts σ = σ1 . . . σn each belonging to the
language described by the regular expression R, applies f to every
two pair of adjacent chunks σiσi+1, and finally concatenates these
results. In order to model operations such as reversing a string, the
operators split, iteration and chained sum also have a left-additive
version in which the outputs computed on each split of the string
are concatenated in reverse order.

A straightforward algorithm to evaluate DReX programs in-
volves “operationalizing” the semantics, i.e. use dynamic program-
ming and evaluate each sub-program on each substring of the input.
Unfortunately, this algorithm takes time cubic in the length of the
input string, and does not scale to strings longer than approximately
a thousand characters. Because of the analogy between DReX oper-
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ators (split sum, conditionals, iteration, etc.) and regular expressions
(concatenation, union, Kleene-*, etc.) one approach is to construct
an automaton model for evaluating DReX programs similarly to the
approach taken to evaluate regular expressions. This is not simple
because of various reasons, such as: (a) the conditional operator,
f else g, applies the transformation g to the input only if the in-
put string is not accepted by f . To check whether a string is in
the complement of the domain of f one needs to determinize the
domain automaton and this is an exponential time operation; and
(b) the operator combine(f, g) is only defined on the intersection of
the domains of f and g. Repeating automata intersections multiple
times also causes an exponential blow-up.

The main technical challenge is to identify a fragment of DReX
which does not sacrifice expressiveness, and still permits “fast” eval-
uation algorithms. We call this subset of DReX the consistent frag-
ment. Intuitively, we require each operator to admit unambiguous
parsing, and limit the operators’ ability to express the complement
and intersection of languages. For example, split(f, g) is consis-
tent iff the domains of f and of g are unambiguously concatenable,
i.e. there is no string with multiple viable splits. In the case of a
conditional f else g, the domains of f and g are required to be dis-
joint, making the complementation of the domain of f unnecessary.
Similarly, for the operator combine(f, g), we require the domains
of f and g to be identical, so that the domain of the entire program
is equal to the domain of its sub-expressions and no language inter-
section is required. For the chain(f,R) operator to be consistent,
the language R∗ is required to be unambiguous, and f is required
to be a split operator for which both the left and right hand sides
are exactly defined on the language described by R. We show that
consistency of a DReX program can be efficiently determined.

We present an algorithm that evaluates a consistent DReX
program f on an input string σ, in time polynomial in the size of f
and linear in the length of σ. Intuitively, we construct a machine for
each sub-program which reads the input in a single left-to-right pass.
Each machine keeps track of potential parse trees of σ as multiple
threads, and updates the threads on reading each input symbol.
The goal of the algorithm is to have a number of threads that is
linear in the size of the program but does not depend on the length
of the input string. This bound is achieved using the consistency
requirements to eagerly kill threads whenever they become inactive.
For example, the machine for split(f, g) outputs a result as soon
as it discovers a single viable split of the input string σ, since the
consistency rules guarantee the absence of any other split. If the
program were not consistent the machine would need to delay the
output causing the number of alive threads to depend on the length of
the string. Similarly, the machine for f else g can output the results
of g whenever this is defined, because of the requirement that f and
g have disjoint domains and cannot simultaneously emit results. We
also present a dynamic programming algorithm that can handle all
DReX programs, but is limited by its cubic time complexity in the
length of the input string.

We implemented our evaluation and consistency-checking algo-
rithms and evaluated them on several text transformations: deletion
of comments from a program, insertion of quotes around words, tag
extraction from XML documents, reversing dictionaries, and the
reordering and aligning of misplaced fields in BibTeX files. The
evaluation algorithm for consistent DReX scales to large inputs
(less than for 8 seconds for 100, 000 characters), while the dynamic
programming algorithm, due to the cubic complexity in the size
of the input, does not scale in practice (more than 60 seconds for
5, 000 characters) and therefore has limited applicability. Finally,
the consistency-checking algorithm is very fast in practice (less than
0.6 seconds for programs of size ≈ 3, 600 subexpressions), and
it is also very helpful in identifying sources of ambiguity in the
implemented programs.

In summary we offer the following contributions.

1. DReX, a language for describing string transformations that
extends the combinators proposed in [3] to model strings over
arbitrary sorts, and consistent DReX, a fragment of DReX that
admits efficient evaluation without sacrificing expressiveness
(section 2);

2. an algorithm for evaluating consistent DReX programs in a
single left-to-right pass that is linear in the size of the input
string and polynomial in the size of the program (section 3);

3. a dynamic programming algorithm for evaluating unrestricted
DReX programs that has cubic time complexity in the length of
the input string (section 4);

4. a proof that adding a composition operator to DReX causes
the evaluation problem to become PSPACE-complete, and the
dynamic programming algorithm to run in time exponential in
the size of the program (section 4); and

5. an implementation of DReX together with an evaluation of our
algorithms on practical string transformations (section 5).

2. The Syntax and Semantics of DReX
2.1 Regular combinators for string transformations
Given a character a ∈ Σ, and an output string d ∈ Γ∗, the function
a 7→ d : Σ∗ → Γ∗⊥ maps the single-character input string σ = a to
the output d, and is undefined for all other inputs:1

Ja 7→ dK(σ) =

{
d if σ = a, and
⊥ otherwise.

Another basic function is ε 7→ d which maps the empty string ε to
the output d ∈ Γ∗, and is undefined everywhere else. The final basic
function bottom is undefined for all input strings.

The split sum operators are the counterparts of concatenation in
regular expressions. Given an input string σ, if there exists a unique
split σ = σ1σ2, such that both Jf1K(σ1) and Jf2K(σ2) are defined,
then

Jsplit(f1, f2)K(σ) = Jf1K(σ1)Jf2K(σ2), and
Jleft–split(f1, f2)K(σ) = Jf2K(σ2)Jf1K(σ1).

For all other inputs (where there is either no split, or multiple viable
splits), both functions are undefined. Note the insistence on a unique
parse tree — this is so that programs define functions, rather than
relations.

Given two DReX functions f1 and f2, the function f1 else f2

first tries to apply f1, and if this fails, applies f2:

Jf1 else f2K(σ) =

{
Jf1K(σ) if Jf1K(σ) 6= ⊥, and
Jf2K(σ) otherwise.

This is the unambiguous counterpart of the union operator of
traditional regular expressions.

Similarly, if both Jf1K(σ) and Jf2K(σ) are defined, then

Jcombine(f1, f2)K(σ) = Jf1K(σ)Jf2K(σ).

If either function is undefined for the input σ, combine(f1, f2) is
undefined as well. This combinator can be used to make multiple
passes over the input string, and a typical example would be the
function that copies the input string twice: σ transformed into σσ. In
terms of the input domain, the operator combine is the counterpart
of intersection in regular languages, and is necessary to achieve

1 We adopt the convention of saying f(x) = ⊥ when f is undefined for the
input x, and write A⊥ for A∪{⊥}, when ⊥ /∈ A.



expressive parity with regular string transformations because of the
non-commutativity of string concatenation.

If f is a DReX program, and the input string σ can be uniquely
split into substrings σ = σ1σ2 . . . σn, with n ≥ 0, and such that
JfK(σi) 6= ⊥, for each i, then

Jiterate(f)K(σ) = JfK(σ1)JfK(σ2) . . . JfK(σn), and
Jleft–iterate(f)K(σ) = JfK(σn)JfK(σn−1) . . . JfK(σ1).

Otherwise (if the input σ cannot be split, or if multiple viable splits
exist), then both iterated sums are undefined. This is the counterpart
of Kleene-* of regular expressions.

The chained sum operator allows us to “mix” outputs produced
by different parts of the input string. This is a new operator,
without a regular expression counterpart, and is necessary for
expressive completeness. Let R be a regular expression that defines
the language JRK = L, and f be a DReX program. Given an input
σ, if there is a unique split σ = σ1σ2 . . . σn, , such that σi ∈ L for
each i, then, if n ≥ 2

Jchain(f,R)K(σ) =JfK(σ1σ2)JfK(σ2σ3) . . .

JfK(σn−1σn), and
Jleft–chain(f,R)K(σ) =JfK(σn−1σn)JfK(σn−2σn−1) . . .

JfK(σ1σ2).

For notational convenience, we treat σ⊥ = ⊥σ = ⊥, and so if
JfK(σiσi+1) is undefined for any i, both functions are undefined.
Furthermore, if a unique split of the input string σ does not exist,
both the chained and left-chained sums are undefined. Notice that
the regular expression R in chain(f,R) defines the split of the
input string, and f is applied to each pair of adjacent splits.

The final operator is function composition. If f1 and f2 are
DReX programs such that Jf1K : Σ∗ → Γ∗⊥, and Jf2K : Γ∗ → Λ∗⊥,
are partial functions, compose(f1, f2) is defined as

Jcompose(f1, f2)K(σ) = Jf2K(Jf1K(σ)),

with the notational convention that Jf1K(⊥) = ⊥.
Recall that regular string transformations can be defined in

multiple equivalent ways: as two-way finite state transducers, as
one-way streaming string transducers, and as MSO-definable graph
transformations. We summarize the main result of [3]:

Theorem 1 (Expressive completeness). For every finite input alpha-
bet Σ, and output alphabet Γ, every regular string transformation
f : Σ∗ → Γ∗⊥ can be expressed by a DReX program.

More precisely, when we include the chained sum, function
composition is unnecessary for expressive completeness, while the
chained sum can itself be expressed using function composition, and
so if composition is included, the chained sum is unnecessary.

2.2 Character sorts and predicates
Consider the basic combinator a 7→ d we described in the previous
subsection, which maps the input σ = a to the output d. For large
alphabets, such as the set of all Unicode characters, this approach of
explicitly mentioning each character does not scale. Basic transfor-
mations in DReX may therefore also reference symbolic predicates
and character functions, as we will now describe. This is inspired
by the recent development of symbolic transducers [26], which has
proved to be useful in several practical applications.

Let Σ, Γ, . . . be a collection of character sorts. For each character
sort Σ, we pick a (possibly infinite) collection of predicates PΣ such
that (a) PΣ is closed under the standard boolean operations: for
each ϕ,ψ ∈ PΣ, ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ ∈ PΣ, and (b) the satisfiability
of predicates is decidable: given ϕ ∈ PΣ, whether there exists an
x ∈ Σ such that ϕ(x) holds is decidable.

A simple example is the sort Σ2 = {a, b} together with
the set of predicates PΣ2 = {x = a, x = b, true, false}.
Another example is the set of all integers Z, and with PZ =
{odd(x), even(x), true, false}. We will write U for the set of
all Unicode characters, with the various character properties PU =
{uppercase(x), digit(x), . . .}.

If ϕ ∈ PΣ and d = [d1, d2, . . . , dk] is a list of character
transformations, i.e. di : Σ → Γ, then ϕ 7→ d is a basic
transformation which maps every single-character string σ which
satisfies ϕ(σ) to the output string d1(σ)d2(σ) . . . dk(σ), and is
undefined for all other strings.

For example, the function uppercase(x) 7→ tolowercase(x)
transforms every upper-case Unicode character to lower-case, while
the function uppercase(x) 7→ xx outputs two copies of an upper-
case character. The function x ≥ 0 7→ x − 1 transforms a non-
negative integer by subtracting one from it. Given an input digit
x ∈ [2-9], the function x ∈ [2-9] 7→ x− 2 subtracts 2 from it.

Note that the basic symbolic transformations can still only
operate on individual characters in isolation, and cannot relate
properties of adjacent characters. For example, we do not allow
transformations such as [x > 0, y > x] 7→ x, y, which outputs two
consecutive symbols x and y, if x > 0 and y > x. It is known that
allowing such “multi-character predicates” makes several analysis
questions undecidable [12].

2.3 Consistent DReX programs
We now define consistent DReX, a restricted class which still
captures all regular string transformations but for which we can
provide an efficient evaluation algorithm (section 3). Intuitively, we
restrict each operator to only allow unambiguous parsing, and limit
the operators’ ability to express expensive automata operations such
as intersection and complement. Since the purpose of the consistency
rules is for the correctness of the evaluation algorithm, we defer
their motivation to subsection 3.6.

2.3.1 Consistent unambiguous regular expressions
The consistency rules we propose are based on the notion of consis-
tent unambiguous regular expression (CURE). CUREs are similar
to conventional regular expressions, but with the additional guaran-
tee that all matched strings have unique parse trees. Unambiguous
regular expressions have been studied in the literature [7, 8, 25] —
we explicitly qualify them as consistent here to emphasize that there
are no strings with multiple parse trees. They are defined inductively
as follows:

1. ⊥ and ε are CUREs. The language associated with ⊥ is the
empty set J⊥K = ∅, and the language associated with ε is the
singleton JεK = {ε}.

2. For each satisfiable predicate ϕ ∈ PΣ, ϕ is a CURE. The
language JϕK associated with the CURE ϕ is the set of all single-
character strings {x ∈ Σ | ϕ(x) holds}.

3. For each pair of non-empty CUREs R1 and R2, if the associated
languages L1 = JR1K and L2 = JR2K are disjoint, then
R1 ∪R2 is also a CURE, and JR1 ∪R2K = L1 ∪L2.

4. Given a pair of non-empty CUREs R1 and R2, we say that they
are unambiguously concatenable, if for each string σ ∈ Σ∗,
there is at most one split σ = σ1σ2 such that σ1 ∈ JR1K and
σ2 ∈ JR2K. IfR1 andR2 are unambiguously concatenable, then
R1 ·R2 is also a CURE, and JR1 ·R2K = JR1KJR2K.

5. A non-empty CURE R is unambiguously iterable if for every
string σ, there is at most one split σ = σ1σ2 . . . σn into
substrings such that σi ∈ JRK for each i. If R is unambiguously
iterable, then R∗ is also a CURE, and JR∗K = JRK∗.



For example, the regular expressions ϕ and (¬ϕ)∗ are unam-
biguously concatenable for every character predicate ϕ: every string
σ matching ϕ · (¬ϕ)∗ has to be split after the first character. On the
other hand, Σ∗ is not unambiguously concatenable with itself: there
are three ways to parse the string aa in Σ∗ · Σ∗, because the left
part of the concatenation can either match ε, a, or aa. The regular
expression Σ∗ is unambiguous — there is only one way to split
each string σ such that each substring is in Σ — but (Σ∗)∗ is not
unambiguous.2

We call two CUREs R1 and R2 equivalent, and write R1 ≡ R2,
if JR1K = JR2K.

2.3.2 Consistency rules
A consistent DReX program is one that satisfies the rules defined
in this section. One major effect of these rules is to guarantee that
no string has multiple parse trees, so the word “unique” in the
definitions of subsection 2.1 is unnecessary. The domain of a DReX
program f is the set containing every string σ such that JfK(σ) is
defined. In the following rules, we assign each consistent DReX
program a domain type, which is a representation of its domain as a
CURE.

Most of the consistency rules are straight-forward, except
for chained sum and combine. Recall from the definition of
chain that for chain(f,R) to be defined on a string σ, we
must have a split σ = σ1σ2 . . . σn with n ≥ 2. Therefore
the domain type of chain(f,R) requires at least two matches
of R: R · R · R∗. Next, we want expressions of the form
chain(combine(split(f11, f12), . . . , split(fk1, fk2)), R · R),
where R is unambiguously concatenable with itself, and the domain
type of each fij is Rij ≡ R, to be consistent. We therefore pay
special attention to the rule for combine.

1. All basic functions bottom, ε 7→ d, and ϕ 7→ d (where ϕ is
satisfiable) are consistent. Their domain types are ⊥, ε and ϕ
respectively.

2. If f1 and f2 are both consistent and have unambiguously
concatenable domain types R1 and R2 respectively, then
split(f1, f2) and left–split(f1, f2) are also both consis-
tent and have the domain R1 ·R2.

3. If f is consistent and has domain type R, and R is unambigu-
ously iterable, then iterate(f) and left–iterate(f) are
both consistent, with domain R∗.

4. If f1 and f2 are consistent with disjoint domain typesR1 andR2

respectively, then f1 else f2 is also consistent with the domain
R1 ∪R2.

5. If f is consistent, and has domain type R1 · R2, such that
R1 ≡ R2 ≡ R, where R is an unambiguously iterable CURE,
then chain(f,R) and left–chain(f,R) are both consistent,
and have the domain R ·R ·R∗.

6. If f1 and f2 are consistent with domain types R1 and R2

respectively, and R1 ≡ R2, then combine(f1, f2) is also
consistent. Depending on the syntactic structure of the CUREs
R1 and R2, the domain type of combine(f1, f2) is defined as
follows:

(a) IfR1 = R11 ·R12, andR2 = R21 ·R22, withR11 ≡ R12 ≡
R21 ≡ R22, then the domain type of combine(f1, f2) isR1.

(b) Otherwise, if R1 is not of the form R11 · R12 with R11 ≡
R12, then the domain type is R1.

(c) Otherwise, the domain type is R2.

2 To be consistent with the traditional notation, we write Σ to denote the
CURE that accepts all input characters, but in our setting, it would formally
be written as the predicate true.

We now strengthen the claim originally made in theorem 1.
While consistency was not an explicit goal in the original proof
of theorem 1, it is the case that every expression constructed was
actually consistent, and we can therefore state:

Theorem 2. For every finite input alphabet Σ, and output alphabet
Γ, every regular function f : Σ∗ → Γ∗⊥ can be expressed by a
consistent DReX program.

The consistency and domain computation rules are syntax-
directed, and straightforward to implement directly. We need to
be able to answer the following basic questions about unambiguous
regular expressions:

1. “Given CUREs R1 and R2, are R1 and R2 unambiguously con-
catenable?”, “Given a CURE R, is it unambiguously iterable?”,
“Given CUREs R1 and R2, are they disjoint, or equivalently, is
R1 ∪R2 also a CURE?” Observe that the traditional algorithm
[24] to convert regular expressions to NFAs converts unam-
biguous regular expressions to unambiguous NFAs, where each
accepted string has exactly one accepting path. Whether a reg-
ular expression R is unambiguous can therefore be checked in
polynomial time [8]: take the product of the corresponding (ε-
transition free) NFA AR with itself, and check for the presence
of a reachable state (q, q′), with q 6= q′, which can itself reach
a pair of accepting states (qf , q

′
f ) ∈ F × F , where F is the set

of accepting states of AL. Thus, if the input alphabet Σ is finite,
these questions can be answered in polynomial time. Otherwise,
the same problems for symbolic automata (representing R1, R2,
etc.) are also decidable in polynomial time assuming that we can
check in polynomial time whether a predicate is satisfiable.

2. “Given CUREs R1 and R2, is R1 ≡ R2?” If Σ is finite,
then from [25], we have that this can be checked in time
O(poly(|R1|, |R2|, |Σ|)). Otherwise, if CUREs are expressed
using the symbolic notation of section 2.2, they can be trans-
lated into symbolic automata, and the equivalence of symbolic
automata is decidable in polynomial time in the size of R1 and
R2 and exponential3 in the number of predicates appearing in
R1 and R2.

Theorem 3. Given a DReX program f over an input alphabet
Σ, checking whether f is consistent is decidable. Furthermore, if
the input alphabet Σ is finite, then the consistency of f can be
determined in time O(poly(|f |, |Σ|)).

Note specifically that programs involving function composition
are not consistent. In the rest of this paper, to distinguish the class
of consistent DReX programs from the bigger class of all DReX
programs, we will qualify the latter as the unrestricted class.

2.4 Examples of consistent DReX programs
The simplest non-trivial DReX program is the identity function
id = iterate(true 7→ x). Several variations of this program
are also useful: iterate(lowercase(x) 7→ touppercase(x))
maps strings of lower-case characters to upper-case, and id¬space =
iterate(¬ space(x) 7→ x) is the identity function restricted to
strings not containing a space.

More interesting functions can be constructed using the con-
ditional operator: the function sw-case = uppercase(x) 7→
tolowercase(x) else lowercase(x) 7→ touppercase(x) flips

3 The algorithm proposed in [25] can check in polynomial time whether two
unambiguous NFAs are equivalent. The algorithm requires the alphabet to be
finite, and using the Minterm generation technique proposed in [14] one can
make a symbolic alphabet finite by constructing the Boolean combinations
of the predicates in the automaton. This operation however can cause an
exponential blow-up.



the case of a single input character, and so iterate(sw-case)
switches the case of each character in the input string.

Given a string of the form “First-name Last-name”, the function
echo-first = split(id¬space, space(x) 7→ ε, iterate(true 7→
ε)) outputs “First-name”. Similarly, the function echo-last which
outputs the last name could be written, and the two can be combined
into combine(echo-last, echo-first), which outputs “Last-name
First-name”. Note that the space in between is omitted — the
expression combine(split(echo-last, ε 7→ " "), echo-first) pre-
serves this space. An example of the use of the left-additive opera-
tors is in string reversal: the function left–iterate(true 7→ x)
reverses the input string.

Finally, to present an example of the chained sum combinator, we
consider the situation of misaligned titles in BibTeX files. Assume
that, by mistake, the title of the first entry appears in the second
entry, the title of the second entry appears in the third entry, and
so on. Let Rbib be the unambiguous regular expression matching
a BibTeX entry. Let fbib be the DReX program which examines
pairs of adjacent BibTeX entries and outputs the title of the second
entry and all other fields from the first entry. Then chain(fbib, Rbib)
corrects the misaligned text in the input file. We now outline the
construction of fbib. Let echo-header be the function which maps
each BibTeX entry to its header (such as “@book{”), and echo-title
be the function which maps each BibTeX entry to its title. Then
make-title = split(echo-header, echo-title) copies the header
from the first BibTeX entry and the title from the second. Similarly,
if copy-body echoes all the fields of a BibTeX entry except the title,
and delete-entry maps an entire BibTeX entry to the empty string ε,
then make-body = split(copy-body, delete-entry) completes the
body of the output using the fields of the first BibTeX entry. We can
then write fbib = combine(make-title,make-body).

The reader is referred to appendix A for a description of the
consistent DReX programs used in our evaluation.

3. A Single-Pass Algorithm for Consistent DReX
In this section, we present the main technical contribution of this pa-
per: a single-pass linear time algorithm to evaluate consistent DReX
programs. We describe the intuition and present the idea of function
evaluators in subsection 3.1, and then construct the evaluators for
each DReX combinator. We conclude with subsection 3.6, a brief
discussion of why this algorithm does not work with unrestricted
DReX programs. Full proofs, and the omitted case of the chained
sum will be included in the full version of this paper.

3.1 Intuition and the idea of function evaluators
Given a consistent DReX program f , we construct an evaluator
T which computes the associated function JfK. The evaluator T
processes the input string from left-to-right, one character at a time.
After reading each character, it outputs the value of f on the string
read so far, if it is defined.

To understand the input / output specifications of T , we consider
the example program split(f, g). In this case, T is given the
sequence of input signals (Start, 0), (σ1, 1), (σ2, 2), . . . , (σn, n).
The first signal (Start, 0) indicates the beginning of the string, and
each character σi is annotated with its index i in the input string.
After reading (σi, i), T responds with the value of split(f, g) on
σ1σ2 . . . σi, if it is defined.

Assume that f and g are consistent, and have unambiguously
concatenable domain types Rf and Rg respectively. The evaluator
T maintains two sub-evaluators Tf and Tg for the functions f and
g respectively. Each time T receives the input (a, i), it forwards this
signal to both Tf and Tg . Whenever Tf reports a result, i.e. that f
is defined on the input string read so far, T sends the signal Start to
Tg to start processing the suffix. Consider the situation in figure 3.1,
where f is defined for the prefixes σ1σ2 . . . σi and σ1σ2 . . . σj .

1 i j nf defined

f defined g defined

(Start, i)

(Start, j)

Threads of Tg

Figure 3.1: Example run of the evaluator T for split(f, g) over
a string σ. The evaluator Tf emits a result at indices i and j of
the input string. The evaluator Tg for g may simultaneously be
processing multiple threads, corresponding to different potential
parse trees of the input string σ. From the consistency rules, we
know that at most one thread may return a result at each index, and
so T can safely emit a result in response to getting a result from Tg .

The input to the sub-evaluator Tg is then the sequence (σ1, 1),
(σ2, 2), . . . , (σi, i), (Start, i), (σi+1, i+ 1), . . . , (σj , j), (Start, j),
. . . , (σn, n).

For each signal (Start, i) occurring in the input string, we call
the subsequent sequence of characters σi+1σi+2 . . . the thread
beginning at index i. Note that each thread corresponds to a potential
parse tree of σ, and that Tg may be processing multiple such threads
simultaneously. The main challenge is to ensure that the number of
active threads in Tg is bound by O(|g|), and is independent of the
length of the input string. After reading σn, Tg reports a result to T ,
the evaluator for the split(f, g). To uniquely identify the thread
j reporting the result, the result signal (Result, j, γg) is annotated
with the index j at which the corresponding Start was received.

Note that the consistency rules guarantee that, after reading each
input symbol, Tg emits at most one result, for otherwise the prefix
of the input string read so far would have multiple parse trees.

When T receives this result signal from Tg , it combines it with
the response (Result, 0, γf ) initially obtained from f at position j,
and itself emits the result (Result, 0, γfγg). To do this, it maintains
a set thg (for threads) of triples (i0f , i0g, γf ), where i0f is the index
along the input string at which Tf was started, i0g was the index
at which Tf reported a result and Tg was started, and γf was the
result reported by Tf . In order to prevent this set thg from becoming
too large, Tg emits kill signals. Say that, at index k, Tg discovers
that for every possible suffix τ ∈ Σ∗, g will be undefined for the
string σi+1σi+2 . . . σkτ , and so the thread (Start, i) of Tg initiated
at the input index i can never return a result. It then emits (Kill, i)
to signal to T that the relevant entries in the set thg can be deleted.

Formal specification of the evaluator. The input alphabet to each
evaluator is therefore In = (Σ∪{Start})×N and the output alphabet
is Out = ({Result}×N×Γ∗)∪({Kill}×N), where Σ is the input
and Γ is the output alphabet of the DReX program.

While constructing the evaluator T for a DReX program f , we
assume the following condition of input validity: for each prefix of
the input stream in, there is at most one thread for which f is defined.
Thus, for example, T can never see two consecutive (Start, i) signals
for the same i. In return, we make the following guarantees:

Correctness of results. After reading each input signal (σj , j) in
in, we report the result (Result, i, γ) exactly for that thread
(Start, i) such that JfK(σi+1σi+2 . . . σj) = γ, if it exists.

Eagerness of kills. Every thread σ beginning at (Start, i) of in,
such that there is no suffix τ for which f(στ) is defined, is
killed exactly once while reading in. Furthermore, there are
always at most O(|f |) active threads, where |f | is the size of f .



If an evaluator T satisfies these requirements for f , then we say that
the evaluator computes f . On the input (Start, 0), (σ1, 1), (σ2, 2),
. . . , (σn, n), the evaluator outputs a result γ in exactly those cases
when f is defined, and in that case, JfK(σ) = γ. We will ensure that
the evaluator T processes each input signal in time O(poly(|f |)).4

3.2 Basic evaluators
The simplest case is when f = bottom. The evaluator T⊥ is defined
by the following rules:

1. On input (Start, i), respond with (Kill, i).

2. On input (a, i), for a ∈ Σ, do nothing.

Claim 4. The evaluator T⊥ computes bottom.

Proof. First, observe that the basic function bottom is not defined
on any string, and the definition of T⊥ never returns a result. Thus,
the correctness requirement is trivially satisfied. Second, there is
never any thread σ and some potential suffix τ such that bottom is
defined for the input string στ . Thus, by killing a thread immediately
after receiving the corresponding start signal, (Start, i), T⊥ satisfies
the requirement for the eagerness of kills. 2

Next, we consider the evaluator Tε7→d, for the case when f =
ε 7→ d, for some d ∈ Γ∗. Intuitively, this evaluator returns a result
immediately on receiving a start signal, but can only kill the thread
after reading the next symbol. It therefore maintains a set th ⊆ N of
currently active threads, which are to be killed on reading the next
input symbol. The set th is initialized to ∅.
1. On input (Start, i), respond with (Result, i, d). Update th :=

th∪{i}.
2. On input (a, i), for a ∈ Σ, respond with (Kill, j), for each

thread start index j ∈ th. Update th := ∅.
Observe that by the condition of input validity, we can never

observe two consecutive start signals in the input stream. Therefore,
|th| ≤ 1, and the response time of Tε7→d to each input signal is
bounded by a constant.
Claim 5. The evaluator Tε7→d computes ε 7→ d.

Proof. There are two parts to showing that Tε7→d correctly declares
results:

1. First, consider some thread (Start, i) such that at index j along
the input string, ε 7→ d is defined. This can only happen when
j = i, and by definition, Tε7→d declares a result in this case.

2. Conversely, consider the case when Tε7→d declares a result. By a
textual reading of the program, this can only happen in response
to a Start, and ε 7→ d is defined in all these cases.

Similarly, it can be shown that Tε7→d kills threads eagerly. Therefore,
the evaluator just constructed computes ε 7→ d. 2

The final basic function is f = ϕ 7→ d for some character
predicate ϕ and d : (Σ→ Γ)∗. The evaluator Tϕ7→d maintains two
sets th, th′ ⊆ N of thread start indices, initialized to th = th′ = ∅.
th is the set of threads for which no symbol has yet been seen, while
th′ is the set of threads for which one input symbol has been seen,
and that input symbol satisfied the predicate ϕ.

1. On input (Start, i), update th := th∪{i}.

4 We assume a representation for strings with concatenation requiring only
constant time. Specifically, strings are only concatenated symbolically using
a pointer representation. Such “lazily” represented strings can be converted
into the traditional sequence-of-characters representation in time linear in
the string length.

2. On input (a, i), for a ∈ Σ:

(a) Emit (Kill, j), for each thread j ∈ th′.

(b) If a satisfies the predicate ϕ, for each thread j ∈ th, emit
(Result, j, d(a)). Update th′ := th, and th := ∅.

(c) If a does not satisfy the predicate ϕ, then for each thread
j ∈ th, emit (Kill, j). Update th := ∅, and th′ := ∅.

Just as in the case of ε 7→ d, we have |th|, |th′| ≤ 1, and so Tϕ 7→d
responds to each input signal in time bounded by some constant.
Claim 6. If ϕ is satisfiable, then the evaluator Tϕ 7→d computes
ϕ 7→ d.

Proof. Because of the similarity in construction, the proof of this
claim is similar to the proof of claim 5. For every thread (Start, i)
such that ϕ 7→ d is defined at input index j, it has to be the case
that j = i + 1, and σj satisfies ϕ. By construction, Tϕ7→d reports
a result on this thread. Conversely, these are the only cases when
the evaluator may return a result, and they all correspond to cases
where ϕ 7→ d is actually defined. Therefore, the evaluator correctly
reports results, and similarly, it follows that it kills threads eagerly
as well. 2

3.3 State-free evaluators: combination and conditionals
The simplest non-trivial evaluator is for combine(f, g). Recall that,
by the consistency requirements, we have Rf ≡ Rg for the domain
types Rf and Rg of the sub-expressions. Thus, all state can be
maintained by the sub-evaluators Tf and Tg and Tcombine(f,g) can
be entirely state-free. It has the following behavior:

1. On input (Start, i), send the signal (Start, i) to both sub-
evaluators Tf and Tg .

2. On input (a, i), send the signal (a, i) to both Tf and Tg .

3. On receiving the result (Result, i, γf ) from Tf and the result
(Result, i, γg) from Tg (which, according to the consistency
requirements for combine(f, g), have to occur simultaneously),
respond with (Result, i, γfγg).

4. On receiving the kill signals (Kill, i) from Tf and Tg (by the
consistency rules, necessarily simultaneously), emit the kill
signal (Kill, i).

Observe that the set of valid input sequences to Tcombine(f,g)
is the same as the set of valid input sequences to Tf and to Tg .
Hence, the set of input signal sequences transmitted to Tf and Tg
by Tcombine(f,g) are valid. Also, note that Tcombine(f,g) responds to
each input signal in time O(1) + tf + tg , where tf and tg are the
response times of the sub-evaluators.
Claim 7. The evaluator Tcombine(f,g) computes combine(f, g).

Proof. First, by the consistency requirement, the threads on which
combine(f, g) is defined are the same as the threads on which f
is defined (and the threads on which g is defined). Therefore, by
the induction hypotheses that Tf and Tg report results correctly,
we can establish that Tcombine(f,g) correctly reports results as well.
Similarly, the set of inactive threads of combine(f, g) is equal to
the set of inactive threads of f and the set of inactive threads of
g. Thus, by the induction hypotheses that Tf and Tg eagerly kill
threads, it follows that Tcombine(f,g) eagerly kills threads as well. 2

The evaluator Tf else g maintains two sub-evaluators Tf and Tg .
In addition, it maintains two sets thf , thg ⊆ N of threads currently
active in Tf and Tg respectively. Both sets are initialized to ∅. The
behavior of Tf else g is defined as follows:



1. On receiving the input (Start, i), update thf := thf ∪{i}, and
thg := thg ∪{i}. Send the start signal (Start, i) to both Tf and
Tg .

2. On receiving the input (a, i) for some a ∈ Σ, send the input
(a, i) to both Tf and Tg .

3. When either Tf or Tg respond with the result (Result, i, γ) (by
the consistency rules, we know that the other sub-evaluator is
not responding with a result), emit the result (Result, i, γ).

4. If a kill signal (Kill, i) is received from Tf (resp. Tg), update
thf := thf \ {i} (resp. thg := thg \ {i}). If i /∈ thf and i /∈ thg ,
then kill the thread by emitting (Kill, i).

The sizes of thf and thg are bounded by the number of active
threads of Tf and Tg respectively, and hence it follows that Tf else g

responds to each input signal in timeO(|f |+ |g|) + tf + tg , where
tf and tg are the response times of Tf and Tg respectively.
Claim 8. Tf else g computes f else g when it is consistent.

Proof. Consider a thread (Start, i) on which f else g is defined.
Then one of two cases has to hold: first, if f is defined on the
thread, by the induction hypothesis that Tf reports results correctly,
it follows that Tf else g responds with a result. Second, in the case
when g is defined on the thread, the induction hypothesis for Tg
confirms that Tf else g responds with a result.

Conversely, if Tf else g reports a result (Result, i, γ), this has
to always be in response to one of Tf or Tg reporting a result.
Therefore, by the induction hypothesis that the sub-evaluators are
correct, we establish that f else g is defined on the thread beginning
at index i.

Finally, consider any inactive thread (Start, i0) of Tf else g . It
has to be the case that (Start, i0) is an inactive thread of both Tf
and Tg . Since thf and thg are the sets of active threads in Tf and
Tg respectively, and Tf else g kills a thread as soon as it disappears
from both sets, we know that T kills threads eagerly as well. 2

3.4 Stateful evaluators: iteration and split sum
We now construct evaluators for iterate(f) and split(f, g).
The evaluators for left–iterate(f) and left–split(f, g) are
symmetric with respect to concatenation and can be constructed
similarly.

First, we build the evaluator Titerate(f), where f is consistent
and has the unambiguously iterable domain type Rf . Whenever
Titerate(f) receives a start signal (Start, i), or an input signal (a, i),
this is passed to Tf . Consider a sequence of input signals σ, as
shown in figure 3.2. After reading each input symbol, say (σn, n),
Tf may report that f is defined for a suffix of the input stream
(Start, k), (σk+1, k + 1), . . . , (σn, n) seen so far. The evaluator
Titerate(f) responds by initiating a new thread of Tf by sending it
the start signal (Start, n). Furthermore, it has to record the result
(Result, k, γ3) just reported by Tf . It does this by adding the entry
(i, n, γ1γ2γ3) to the set th. Each entry (i0, j0, γ) ∈ th refers to an
active thread j0 of Tf , the index of the signal (Start, i0) received by
Titerate(f), and the cumulative result γ obtained so far.

Formally, the set th ⊆ N × N × Γ∗ is initialized to ∅. The
evaluator Titerate(f) does the following:

1. On input (Start, i):

(a) Update th := th∪{(i, i, ε)}.
(b) Send (Start, i) to Tf . Assert that Tf does not respond with

a result (Result, i, γ), because by the consistency rules, f(ε)
is undefined for Rf to be unambiguously iterable.

(c) Respond with the result (Result, i, ε).

1 (Start, i) j k n

Tf reports γ1 Tf reports γ2 Tf reports γ3

Figure 3.2: For each thread (Start, i0) of the evaluator Titerate(f),
there may be multiple potential parse trees. The evaluator Titerate(f)

maps individual threads (Start, i) of Tf to the corresponding start
signal (Start, i0) in Titerate(f) through the entry (i0, i, γ) in the set
th. Thus, after obtaining the response from Tf at index n, Titerate(f)

updates th := th∪{(i, n, γ1γ2γ3)}.

2. On input (a, i), send the signal (a, i) to Tf . For each response
of Tf , do the following:

(a) If the response is a result, (Result, j, γf ), then, find the
corresponding entry (j0, j, γ) ∈ th, for some values of j0
and γ. Assert (by the invariant that th records the active
threads of Tf ) that this entry exists, and is unique.

i. Update th := th∪{(j0, i, γγf )}.
ii. Send the signal (Start, i) to Tf . Confirm that Tf does

not respond with a result (Result, i, γ′f ), for that would
violate the consistency requirements.

iii. Respond with the result (Result, j0, γγf ).

(b) If the response is a kill signal, (Kill, j):

i. Let kill-ring be the set of all tuples (j0, j, γ) ∈ th, for
some values of j0 and γ. By the consistency require-
ments, kill-ring is asserted to be a singleton set.

ii. Update th := th \ kill-ring.

iii. For every entry (j0, j, γ) ∈ kill-ring if there is no entry
of the form (j0, j

′, γ′) ∈ th, then emit the kill signal
(Kill, j0).

Observe that an element is added to th exactly when it is sent a start
signal, and an entry is deleted exactly when Titerate(f) receives a
kill signal. Thus, the entries of th correspond to the active threads
of Tf , and its size is bounded by O(|f |). The response time of
Titerate(f) to each input signal is therefore O(|f |) + tf , where tf
is the response time of Tf .
Claim 9. For all consistent DReX programs iterate(f), the
evaluator Titerate(f) computes iterate(f).

Proof. We first establish that the sequence of input signals sent to
Tf is valid. By induction on the number of intermediate start signals
sent to Tf in a given thread, we have that whenever Tf responds
with a signal, iterate(f) is defined as well. By the assumption
that Lf is unambiguously iterable, and that the input sequence to
Titerate(f) is itself valid, it follows that no more than one active
thread of Tf may report a result after each input character, and
hence the input sequence is valid. Furthermore, Titerate(f) only
returns results on receiving a start signal, or when it receives a result
from Tf . Hence, we have also established that every result from
Titerate(f) corresponds to iterate(f) actually being defined on
the relevant thread.

Conversely, consider the case when iterate(f) is defined for
some thread. By induction on the number of divisions of the input
string σ, and the hypothesis that Tf correctly returns results for f ,
we have that Titerate(f) returns a result as well.

Finally, each entry (i0, i, γ) corresponds to an active thread of
execution of Titerate(f). We emit a kill signal as soon as a particular
i0 disappears from th and hence Titerate(f) eagerly kills threads.
Note that the size |th| is bounded by the number of active threads of
Tf . 2



The evaluator Tsplit(f,g) for split(f, g) is similar, except
that it maintains two sets: the first set thf ⊆ N is the set of
thread start indices which are still active in Tf , and the second
set thg ⊆ N×N×Γ∗ is the set of triples (i0, i, γf ) which indicates,
for each active thread in Tg , the index i at which Tg was signaled to
start, the index i0 of the original start received by Tsplit(f,g), when
Tf was started, and the value γf returned by Tf on the prefix. Both
sets are initialized to ∅, and Tsplit(f,g) follows the following rules:

1. On input (Start, i):

(a) Update thf := thf ∪{i}.
(b) Send (Start, i) to Tf . Let Rspf be the responses from Tf .

Let Rspg = ∅.
2. On input (a, i):

(a) Send (a, i) to Tf . Let Rspf be the set of responses from Tf .

(b) Send (a, i) to Tg . Let Rspg be the set of responses from Tg .

3. For each response r ∈ Rspf ∪Rspg , do the following:

(a) If r is a result (Result, j0, γf ) from Tf ,

i. Update thg := thg ∪{(j0, i, γf )}.
ii. Send the signal (Start, i) to Tg . Update Rspg :=

Rspg ∪Rsp′g , where Rsp′g is the set of responses from
Tg .

(b) If r is a result (Result, j, γg) from Tg , let (j0, j, γf ) be the
(by the consistency rules, necessarily unique) corresponding
record in thg . Respond with (Result, j0, γfγg).

(c) If r is a kill signal (Kill, j0) from Tf ,

i. Update thf := thf \ {j0}.
ii. If there is no element of the form (j0, j, γf ) ∈ thg , for

some values of j, γf , kill the thread: (Kill, j0).

(d) Finally, if r is a kill signal (Kill, j) from Tg ,

i. Let kill-ring be the set of tuples (j0, j, γf ) ∈ thg for
some values of j0, γf .

ii. Update thg := thg \ kill-ring.

iii. For every record (j0, j, γf ) ∈ kill-ring, if there is no
longer a record of the form (j0, j

′, γ′f ) ∈ thg , and
j0 /∈ thf , kill the thread beginning at j0: (Kill, j0).

By the consistency restrictions, the set of valid input sequences
to Tsplit(f,g) is a subset of the set of the set of valid input sequences
to Tf : hence, by the induction hypothesis, it follows that the input
sequences to both Tf and Tg are valid.

It is clear from construction that Tsplit(f,g) reports results
correctly. Consider a thread which cannot return any further results:
in particular, Tf cannot return any further results, and for all
threads spawned by Tf , Tg cannot return any further results. Thus,
Tsplit(f,g) kills threads eagerly. We therefore have:
Claim 10. Whenever the program split(f, g) is consistent, the
evaluator Tsplit(f,g) computes split(f, g).

Observe that |thf | is bound by the number of active threads of
Tf and |thg| is bound by the number of active threads of Tg . Thus,
Tsplit(f,g) responds to each input signal in timeO(|f |+ |g|) + tf +
tg , where tf and tg are the response times of Tf and Tg respectively.

3.5 Chained sum
By induction on the type-checking rules, it can be shown that
whenever chain(f,R) is consistent, we can write

f = combine(split(f11, f12), . . . , split(fk1, fk2)).

Note that the combine operator is associative, and hence we can
freely extend it into a multi-arity function. In this subsection,
we will only construct a evaluator for chain(split(f, g), R),
where L is unambiguously iterable, and the domain types satisfy
Rf ≡ Rg ≡ R. The full case of the combination of multiple split
sums can be done similarly.

Intuitively, the evaluator Tchain(split(f,g),R) which we will
now construct is approximately a combination of the evaluators
Tsplit(f,g) and Titerate(f) for split(f, g) and iterate(f) respec-
tively.

The evaluator maintains three sets (see figure 3.3): (a) thf ⊆ N
is the set of active threads of Tf which were initiated in response to
Tchain(split(f,g),L) receiving a start signal, (b) thg ⊆ N× Γ∗ is the
set of records (ig, γf ), which relate each active thread (Start, ig) of
Tg to the value γf returned by Tf immediately before its invocation,
and (c) th ⊆ N × N × Γ∗ consists of records (i0, ig, γ), that
describe potential parse trees of the input string σ. For each thread
ig of Tg , this notes the index i0 along the input string at which
Tchain(split(f,g),L) received the start signal, and γ is the value of
chain(split(f, g), L) at index ig . All three sets are initialized to
∅.

The evaluator Tchain(split(f,g),R) obeys the following rules:

1. On receiving (Start, i): (a) update thf := thf ∪{i}, and (b) send
(Start, i) to Tf .

2. On receiving (a, i), send (a, i) to Tf and Tg . Let Rspf and rspg
be the set of their responses. For each response r ∈ Rspf ∪Rspg ,

(a) If r = (Result, j, γf ), and is emitted by Tf , (a) update
thg := thg ∪{(i, γf )}, (b) send the signal (Start, i) to Tg ,
and (c) if j ∈ thf , then update th := th∪{(j, j, i, ε)}, and
send the signal (Start, i) to Tf .

(b) If r = (Result, j, γg), and is emitted by Tg:

i. Let (j, γf ) be the (by the consistency rules, necessarily
unique) record in thg , for some values of j0 and γf .

ii. Let (j00, j, γ) be the (by the consistency rules, necessar-
ily unique) record in th, for some values of of j00 and
γ.

iii. Update th := th∪{(j00, i, γγfγg)}.
iv. Send the signal (Start, i) to Tf .

v. Respond with (Result, j00, γγfγg).

(c) If r = (Kill, j), and is emitted by Tf :

i. Update thf := thf \ {j}.
ii. If there is no element of the form (j, k, γ) in th, emit

(Kill, j).

iii. Delete the record (j0, j, γ) ∈ th. This record is not
guaranteed to exist, but if it does, it is unique. If j0 /∈ thf ,
and there is no other record of the form (j0, j

′, γ′) in th,
then emit (Kill, j0).

(d) If r = (Kill, j), and is emitted by Tg , ignore r. Observe that,
by the consistency requirements, Tf must have also emitted
a kill signal at the same location.

First, observe that the sequence of input signals to both Tf and Tg
are valid. This is because Rf ≡ Rg ≡ R, which is unambiguously
iterable, and a start signal to the sub-evaluators is only sent in
response to a result from one of them, or a start signal from the
external world.

From the observation of input validity, and the consistency rules,
we are guaranteed that both Tf and Tg do no respond to a start
signal.
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Figure 3.3: The data structures maintained by the evaluator Tchain(split(f,g),R). The evaluator received (Start, 0) at the beginning of the string.
Until Tf reports (Kill, 0), thf = {0}. When Tf reports γf3 at the bottom of the figure, the entry (k, γf3) is added to thg . In response to Tg
reporting γg2, T emits (Result, 0, γf1γg1γf2γg2), and adds (0, k, γf1γg1γf2γg2) to th.

By induction on the parse tree of a thread, it can be shown that
Tchain(f,R) reports each result. Conversely, every result reported by
Tchain(f,R) corresponds to a parse tree of the thread, and therefore
results are correctly reported. By similar techniques as for iterated
sum, it can be shown that Tchain(f,R) eagerly kills threads. Thus, we
have:
Claim 11. Whenever chain(f,R) is consistent, the evaluator
Tchain(f,R) computes chain(f,R).

Finally, since |thf | is bounded by the maximum number of active
threads of Tf , and |thg| and |th| are bound by the number of active
threads of Tg , it follows that the Tchain(f,R) responds to each input
signal in time O(|f | + |g|) + tf + tg , where tf and tg are the
response times of the sub-evaluators.

3.6 What breaks with unrestricted DReX programs?
First, notice that the function composition operator is un-amenable
to the evaluator model we just described. We wish to process each
character in bounded time, regardless of the length of the input
string. Consider the case of compose(f, g): when the evaluator Tf
returns a result (Result, i, γ), we have to pass the entire intermediate
result string γ to Tg , and this is possibly as long as the input seen
so far. Notice that this limitation should be unsurprising, because
nested function compositions — such as the transformation σ 7→ σσ
composed with itself k times — can cause an exponential blowup
in the length of the output string.

Next, consider a potential evaluator T for split(f, g), in the
absence of any consistency requirement. Thus, there might exist
strings σ = σ1σ2 . . . σn which admit two splits σ = τ1τ2 = τ ′1τ

′
2,

such that all of JfK(τ1), JfK(τ ′1), JgK(τ2), and JgK(τ ′2) are defined.
In this case, split(f, g) is undefined for the entire string σ. We
have to drop the requirement of input validity, because the nested
evaluator Tg emits two Result signals after reading σn. We could
conceivably modify T to emit an output signal when exactly one
thread of Tg returns a result.

Unfortunately, it turns out that this modification is insufficient,
as the induction hypothesis now breaks. Consider the case of f =
split(f1, split(f2, f3)), and an input string σ = σ1σ2 . . . σn
which can be split in three ways as shown in figure 3.4. In this case,
the evaluator T23 for split(f2, f3) receives three Result signals
from T3 after processing σn. However, it must still emit an output
signal (Result, j, γ2γ3), and so the behavior of T23 has to be more
complicated than “emit a Result signal when exactly one thread of
T3 returns”. The consistency rules, which eliminate the case of such
strings, provide an easy way to avoid this non-trivial book-keeping.

Similarly, the disjointedness of domains requirement for the
conditional combinator ensures that both nested combinators Tf

and Tg of the evaluator T for f else g never return simultaneously.
This simplifies the construction of T .

By semantics of combine, the domain of combine(f, g) is
Dom(f)∩Dom(g), where Dom(f) and Dom(g) are the do-
mains over which f and g are respectively defined. By the con-
sistency requirement, we force that Dom(f) = Dom(g) =
Dom(f)∩Dom(g), thus simplifying the structure of the domain
type and hence the type-checking algorithm.

Finally, note that unrestricted use of the chained sum operator
does not satisfy the output bound |JfK(σ)| = O(poly(|f |) |σ|),
while every consistent DReX program obeys |JfK(σ)| ≤ |f | |σ|.

4. The Complexity of Unrestricted DReX
In this section we first describe the dynamic programming algorithm
to evaluate DReX programs. We show that it has time complexity
cubic in the size of the input string, and when function composition
is allowed, requires time exponential in the size of the program.
We then show that the evaluation problem for DReX programs
with composition is PSPACE-complete, and is thus computationally
hard. Finally, we argue that for unrestricted DReX programs, even
when disallowing composition, there is no evaluation algorithm for
which the complexity is linear in the length of the input string and
polynomial in the size of the program.

4.1 Evaluation by dynamic programming
We now describe the dynamic programming algorithm to evaluate
unrestricted DReX programs. This algorithm also works on pro-
grams containing the function composition operator. The algorithm
mimics the semantics of DReX by computing the following func-
tions (represented as lookup tables). Given a program f , and a string
σ, for any two numbers i and j the algorithm computes the function
OUT(f, σ, i, j) representing the output of f on the substring5 σ[i, j],
JfK(σ[i, j]). To evaluate the operator iterate(f) we also need
to compute the function COUNT(iterate(f), σ, i, j) that counts
the number of possible ways to split σ[i, j] so that each split is
accepted by f , and to evaluate the operator chain(f,R) we com-
pute the function BEL(R, σ, i, j) which checks whether a substring
σ[i, j] belongs to the language JRK. Every function OUT, COUNT,
and BEL is represented by a table and for each string σ, and each
sub-program g of f , each table will have O(|σ|2) entries, corre-
sponding to the substrings of σ. The final output of the algorithm is
OUT(f, σ, 1, |σ|+ 1).

5 We define the substring σ[i, j] of σ as σiσi+1 . . . σj−1, so that σ[i, i] = ε,
for each i, and σ[1, |σ| + 1] is the entire string σ.



σ

σ = τ1τ2τ3
Jf1K(τ1) 6= ⊥ Jf2K(τ2) 6= ⊥ Jf3K(τ3) 6= ⊥

σ = λ1λ2λ3

Jf1K(λ1) 6= ⊥ Jf2K(λ2) 6= ⊥ Jf3K(λ3) 6= ⊥

σ = λ′1λ
′
2λ
′
3

Jf1K(λ′1) 6= ⊥ Jf2K(λ′2) 6= ⊥ Jf3K(λ′3) 6= ⊥

Figure 3.4: The evaluator approach does not work for unrestricted DReX programs. The string σ = σ1σ2 . . . σn is passed as input to the
inconsistent program f = split(f1, split(f2, f3)). The input σ can be split in three ways σ = τ1τ2τ3 = λ1λ2λ3 = λ1λ

′
2λ
′
3. By the

semantics of split, split(f2, f3) is undefined over the input substring λ2λ3 = λ′2λ
′
3, and hence f itself is defined for the entire string

σ. After processing the last character σn, the evaluator T23 for split(f2, f3) has to correctly process three Result signals from T3 and this
seems tricky to implement correctly.

We explain the intuition of the algorithm by showing how the
entries are computed for the iteration and composition operators.
The value OUT(iterate(f), σ, i, j) corresponding to the output
of iterate(f) on the string σ′ = σ[i, j] is defined iff there is a
unique way to split the string σ′ into multiple chunks so that f is
defined on each chunk, i.e. iff COUNT(iterate(f), σ, i, j) = 1. If
this is the case, then we know that there is a unique value k, such
that i ≤ k < j, for which both γpre = OUT(iterate(f), σ, i, k)
and γpost = OUT(f, σ, k, j) are defined, and γpreγpost is the output
of iterate(f) on σ[i, j]. Looking for this witness k takes at most
|σ| steps if all the required table entries have already been computed.
Similarly, the entry COUNT(iterate(f), σ, i, j) can be computed
in at most |σ| steps by counting for how many values of l the function
COUNT(iterate(f), σ, i, l) is greater than 0 and the functions
OUT(f, σ, l, j) is defined.

The rule for computing OUT(compose(f1, f2), σ, i, j) is what
causes an exponential blow-up in the evaluation time. To compute
the output of compose(f1, f2) on σ[i, j], we first need to compute
the output τ = OUT(f1, σ, i, j) of the program f1 on the string
σ[i, j] and then the output OUT(f2, τ, 1, |τ | + 1) of the program
f2 on the string τ . As we will show, when using the composition
operator the size of the output τ may grow exponentially, and since
computing each entry of the table OUT(f2, τ, ·, ·) requires O(τ)
steps, the resulting complexity is also exponential.

The complete set of rules to construct the lookup table OUT
is summarized in figure 4.1. We will now analyze the complexity
of this algorithm, parameterized by the number of composition
operators appearing in the program. In [3] it is shown that the chain
operator can be equivalently replaced by the composition operator.
Therefore, we define:

Definition 12 (Composition depth). Given a program f in DReX
the composition depth of f , C(f) is the number of composition or
chained-sum operators in f , and it may be computed as follows:

1. C(ϕ 7→ d) = 0, C(ε 7→ d) = 0, and C(bottom) = 0;
2. C(compose(f1, f2)) = 1 + C(f1) + C(f2);
3. C(chain(f1, R)) = C(left–chain(f1, R)) = 1 + C(f1);
4. C(combine(f1, f2)) = C(split(f1, f2)) =

C(left–split(f1, f2)) = C(f1 else f2) =
C(f1) + C(f2);

5. C(iterate(f1)) = C(left–iterate(f1)) = C(f1);

We can then prove the following bound on the length of the
output of a DReX program.

Lemma 13 (Output size). Given a program f and an input string
σ ∈ Σ∗ such that τ = JfK(σ) is defined, we have |τ | ≤ |f |d+1 |σ|.
Here d is the composition depth of f .

Proof. We prove the statement by structural induction on f . The
base case is immediate since the output of f = ϕ 7→ d has length
d ≤ |f |. We now present the inductive step for the interesting cases:

1. When f = compose(f1, f2). Let σ1 = Jf1K(σ). By the IH,
we have |σ′| ≤ |f1|C(f1)+1 |σ|, and |τ | ≤ |f2|C(f2)+1 |σ′|.
Therefore,

|τ | ≤ |f2|C(f2)+1|f1|C(f1)+1 |σ|
≤ |f |C(f2)+1|f |C(f1)+1 |σ|
≤ |f |C(f1)+C(f2)+2 |σ|
≤ |f |C(f)+1 |σ| .

2. When f = chain(f1, R). Let σ = σ1σ2 . . . σn, with n ≥ 2 be
the split of the input string induced by R. Then by the IH,

|τ | ≤ |f1|C(f1)+1(|σ1σ2|+ |σ2σ3|+ · · ·+ |σn−1σn|)
≤ 2|f1|C(f1)+1 |σ|
≤ |f |C(f1)+1+1 |strvar|
≤ |f |C(f)+1 |σ| .

3. When f = combine(f1, f2). Let τ1 = Jf1K(σ) and τ2 =
Jf2K(σ), so that τ = τ1τ2. By the IH,

|τ | = |τ1|+ |τ2|
≤ |f1|C(f1)+1 |σ|+ |f2|C(f2)+1 |σ|
≤ |f |(|f |C(f1) + |f |C(f2)) |σ|
≤ |f |C(f1)+C(f2)+1 |σ|
≤ |f |C(f)+1 |σ| .

The other cases are similar. 2

Theorem 14 (Complexity of dynamic programming). Given a
program f , and an input string σ ∈ Σ∗, the output JfK can be
computed in time O(|f |2d

2+5d+4 |σ|2d+3) where d = C(f) is the
number of composition operators in f . If d = 0 we can show that
the algorithm has complexity O(|f | |σ|3).



OUT(ϕ 7→ d, σ, i, j) =

{
d(σi) if i+ 1 = j, and ϕ(σi) is true, and
⊥ otherwise.

OUT(ε 7→ d, σ, i, j) =

{
d if σ[i, j] = ε, and
⊥ otherwise.

OUT(bottom, σ, i, j) = ⊥.

OUT(split(f1, f2), σ, i, j) =

τ1τ2 if ∃!k such that i ≤ k ≤ j, and where τ1 = OUT(f1, σ, i, k) 6= ⊥, and
τ2 = OUT(f2, σ, k, j) 6= ⊥, and

⊥ otherwise.

OUT(left–split(f1, f2), σ, i, j) =

τ2τ1 if ∃!k such that i ≤ k ≤ j, and where τ1 = OUT(f1, σ, i, k) 6= ⊥, and
τ2 = OUT(f2, σ, k, j) 6= ⊥, and

⊥ otherwise.

OUT(f1 else f2, σ, i, j) =

{
OUT(f1, σ, i, j) if OUT(f1, σ, i, j) 6= ⊥, and
OUT(f2, σ, i, j) otherwise.

OUT(combine(f1, f2), σ, i, j) = OUT(f1, σ, i, j)OUT(f2, σ, i, j).

OUT(iterate(f), σ, i, j) =


ε if i = j and OUT(f, σ, 0, 0) = ⊥,
τ1τ2 otherwise if ∃!k such that i ≤ k ≤ j ∧ τ1 = OUT(iterate(f), σ, i, k) 6= ⊥∧ τ2 =

OUT(f, σ, k, j) 6= ⊥, and
⊥ otherwise.

OUT(left–iterate(f), σ, i, j) =


ε if i = j and OUT(f, σ, 0, 0) = ⊥,
τ2τ1 otherwise if ∃!k such that i ≤ k ≤ j ∧ τ1 = OUT(iterate(f), σ, i, k) 6= ⊥∧ τ2 =

OUT(f, σ, k, j) 6= ⊥, and
⊥ otherwise.

OUT(chain(f,R), σ, i, j) =



⊥ if i = j,
OUT(f, σ, i, j) otherwise if COUNT(R∗, σ, i, j) = 1, and ∃k such that i ≤ k ≤ j, BEL(R, σ, i, k)

and BEL(R, σ, k, j),
τ1τ2 otherwise if COUNT(R∗, σ, i, j) = 1, and ∃k, l such that i ≤ k ≤ l ≤ j,

BEL(R, σ, i, k), BEL(R, σ, k, l), and where τ1 = OUT(f, σ, i, l) 6= ⊥ and τ2 =
OUT(chain(f,R), σ, k, j) 6= ⊥, and

⊥ otherwise.

OUT(left–chain(f,R), σ, i, j) =



⊥ if i = j,
OUT(f, σ, i, j) otherwise if COUNT(R∗, σ, i, j) = 1, and ∃k such that i ≤ k ≤ j, BEL(R, σ, i, k)

and BEL(R, σ, k, j),
τ2τ1 otherwise if COUNT(R∗, σ, i, j) = 1, and ∃k, l such that i ≤ k ≤ l ≤ j,

BEL(R, σ, i, k), BEL(R, σ, k, l), and where τ1 = OUT(f, σ, i, l) 6= ⊥ and τ2 =
OUT(chain(f,R), σ, k, j) 6= ⊥, and

⊥ otherwise.

OUT(compose(f1, f2), σ, i, j) = OUT(f2, τ, 1, |τ |+ 1), where τ = OUT(f1, σ, i, j) and τ 6= ⊥.

Figure 4.1: Summary of the lookup table construction rules for the dynamic programming algorithm of subsection 4.1. Recall that σ[i, j]
refers to the substring σiσi+1 . . . σj−1, and OUT(f, σ, i, j) is the value of f on the input σ[i, j], JfK(σ[i, j]). For the iteration operation
iterate(f), the lookup table entry COUNT(iterate(f), σ, i, j) contains the number of splits of the input substring σ[i, j] such that each
split is accepted by f , and BEL(R, σ, i, j) is true iff σ[i, j] ∈ JRK. We use the notation ∃! as shorthand for the phrase “exists a unique”, so that
∃!x, ϕ(x) is true iff there is a unique value x satisfying the predicate ϕ.



Proof. We first discuss the complexity of the algorithm in the
absence of composition operators. For a particular string σ and if the
program f that does not contain any composition operators (d = 0),
computing each entry of the table takes timeO(|σ|), and since there
are |f | |σ|2 entries the algorithm has complexity O(|f | |σ|3). The
linear complexity required for computing each entry can be shown
by inspecting each rule in figure 4.1.

In the presence of composition operators which can produce
intermediate results, for each intermediate string τ , a new ta-
ble of size O(|τ |2) must be created. Assume that we are com-
puting the entry OUT(f, σ, i, j) of the table for a string σ and
f = compose(f1, f2). At this point we will need the value τ =
OUT(f1, σ, i, j), whose computation does not require a new table,
and the value OUT(f2, τ, 1, |τ |) which requires building a new table
for the string τ . Computing OUT(f, σ, ·, ·) may therefore require
to build O(|σ|2) new tables that will need to be evaluated on f2.
This would happen whenever we have a composition: the left sub-
program f1 is evaluated on the same number of tables as f while the
right sub-program f2 will be evaluated on O(|σ|2) tables, where σ
is the size of the biggest string f is evaluated on. The total number
of computed tables is therefore O(|f ||S|2d), where S is the size of
the biggest intermediate result f can produce and d is the number
of composition operators in f .

From lemma 13 we know that the biggest string S that the
program can produce has size O(|f |d+1 |σ|). Therefore the total
number of computed tables isO(|f |2d

2+1 |σ|2d) and each table has
size at most O(|f |d+1 |σ|). We know that computing each table
takes time cubic in the size of the corresponding string and we can
conclude that the algorithm runs in time O(|f |2d

2+5d+4 |σ|2d+3)
where d = C(f). 2

4.2 Evaluating unrestricted DReX programs in PSPACE

While the main appeal of the algorithm in subsection 4.1 is ease of
implementation, it can use exponential space. It turns out that, even
in the presence of composition, DReX programs can be evaluated in
PSPACE. First observe that, since the output computed by a program
has at most exponentially many characters (lemma 13), the index
of each character in the output is only polynomially many bits
long. We therefore adopt an implicit representation of strings with
the following operations (in contrast with the traditional explicit
list-of-characters representation of strings): (a) check whether σ
is defined; (b) compute the length of σ; and (c) given an index i,
compute the i-th character of σ. Finally, by structural induction on
the DReX program f , and given an implicit representation of the
input string σ, we build an implicit representation of JfK(σ) using
only polynomial space. For example, the implicit representation of
Jf else gK(σ) would function as follows: (a) to check whether the
output is defined, simply determine whether either JfK(σ) or JgK(σ)
is defined; (b) to compute the length of the output, if JfK(σ) is
defined, return the length of JfK(σ), and otherwise, return the length
of JgK(σ); and (c) to compute the i-th character of Jf else gK(σ),
if τ1 = JfK(σ) is defined, then return the i-th character of τ1,
and otherwise, return the i-th character of τ2 = JgK(τ). Observe
that since both nested implicit representations JfK(σ) and JgK(σ)
consume only polynomial space, Jf else gK(σ) is itself evaluated
in polynomial space. The most interesting case is compose(f, g)
where we simply connect the implicit representation of the output
of JfK(σ) to the input of the function g. The only non-trivial case is
when f = iterate(g). To check whether f is defined on the input
σ, we need to determine whether there is exactly one way to split σ
such that g is defined on each split. Consider each position in the
string σ as a vertex in a graph, with an edge between two vertices
iff g is defined on the substring between them. Then each path from
the initial to the final node of this graph corresponds to a viable split

of σ, and thus f is defined on σ iff there is a unique path from the
initial node to the final node in this implicitly represented graph of
potentially exponential size. This problem can be solved in PSPACE.

Theorem 15. Given a DReX program f , and strings σ ∈ Σ∗ and
τ ∈ Γ∗, the problem of determining whether JfK(σ) = τ is in
PSPACE.

Proof. We will construct, by structural induction on f , three ma-
chines isdefg , leng , and charatg for each subexpression g of f .
Given an input string σ′ represented implicitly, these machines
together provide an implicit representation of JgK(σ′). Therefore:

1. isdefg(σ
′) is a boolean value indicating whether g is defined for

the input string σ′,
2. isdefg(σ

′) is a non-negative integer indicating the length of
JgK(σ′) (assuming that g is defined on the input σ′), and

3. charatg(σ
′, i), assuming that JgK(σ′) is defined and 1 ≤ i ≤

|JgK(σ′)|, is the i-th character of JgK(σ′).

We now present the construction for each DReX combinator.
We will ensure that each machine maintains only a polynomial
amount of book-keeping space, and only accesses its input through
the implicit string interface. We make free use of the fact that
PSPACE = NPSPACE.

1. When f = ϕ 7→ d. If σ is undefined, or if |σ| 6= 1, or
otherwise if ¬ϕ(σ1), then isdeff (σ) = false. In all other
cases, isdeff (σ) = true. lenf (σ) = |d|. charatf (σ, i) =
di(σ1). The construction is similar for ε 7→ d and bottom.

2. When f = split(f1, f2) (the construction for the case
of left–split(f1, f2) is similar). If σ is undefined, then
isdeff (σ) = false. Otherwise, we non-deterministically
guess a viable split index i, 1 ≤ i ≤ |σ| + 1, such that
isdeff1(σ[1, i]) ∧ isdeff2(σ[i, |σ| + 1]).6 Because PSPACE =
NPSPACE, isdeff can guess this split in polynomial space. To
confirm that this is the only viable split, we attempt to non-
deterministically guess another split index i′, 1 ≤ i′ ≤ |σ|+ 1,
such that i′ 6= i and isdeff1(σ[1, i′]) ∧ isdeff2(σ[i′, |σ|+ 1]).
Again, isdeff (σ) can determine the absence of such a split in
polynomial space. In this case, isdeff (σ) = true. In all other
cases, isdeff (σ) = false.
Next, lenf works as follows. On input σ, it first determines the
split index i exactly as isdeff . It then outputs lenf1(σ[1, i]) +
lenf2(σ[i, |σ|+ 1]).
Finally, we describe charatf . On calling charatf (σ, j), the
machine determines the split index i as before. Next, if
j ≤ lenf1(σ[1, i]), then it outputs charatf1(σ[1, i], j). Oth-
erwise, it outputs charatf2(σ[i, |σ| + 1], j′), where j′ =
j − lenf1(σ[1, i]).

3. The construction for f = f1 else f2 is straightforward.
isdeff (σ) = isdeff1(σ) ∨ isdeff2(σ). If isdeff1(σ), then
lenf (σ) = lenf1(σ) and charatf (σ, i) = charatf1(σ, i),
and otherwise lenf (σ) = lenf2(σ) and charatf (σ, i) =
charatf2(σ, i).

4. The construction for f = combine(f1, f2) is also simple.
isdeff (σ) = isdeff1(σ) ∧ isdeff2(σ). lenf (σ) = lenf1(σ) +
lenf2(σ). If i ≤ lenf1(σ), then charatf (σ, i) = charatf1(σ, i),
and otherwise, charatf (σ, i) = charatf2(σ, i′), where i′ =
i− lenf1(σ).

5. The cases for iterated sum and left-iterated sum are similar,
and are technically the most involved in this proof. We will
perform the construction for the case of the iterated sum, f =

6 Recall the convention that σ[i, j] is the substring σiσi+1 . . . σj−1 of σ.
Also note that it is straightforward to construct the implicit representation of
σ[i, j], given an implicit representation of σ, and indices i and j.



iterate(f1). First, if isdeff1(ε), then isdeff (σ) = false,
since there are guaranteed to be multiple ways to split σ. Other-
wise, given an input string σ, the existence of a viable split
i1 = 1 ≤ i2 < i3 < · · · < in = |σ| + 1 such that
isdeff1(σ[ij , ij+1]) for each j can be non-deterministically
guessed and verified in polynomial space, and hence, by
PSPACE = NPSPACE, in deterministic polynomial space. Next,
the existence of two distinct splits i1 = 1 < i2 < · · · < ik,
ik < ik+1 < · · · < im = |σ| + 1, and ik < jk+1 <
· · · < jn = |σ| + 1, with ik+1 6= jk+1 and such that
isdeff1(σ[ik, jk+1]), isdeff1(σ[il, il+1]), isdeff1(σ[jl, jl+1])
for each l can also be non-deterministically guessed and verified
in polynomial space.
If σ is defined, ¬ isdeff1(ε), and a unique split exists of the
input string σ, then isdeff (σ) = true. In all other cases,
isdeff (σ) = false.
Let i1 = 1 ≤ i2 < i3 < · · · < in = |σ| + 1 be
the viable split of σ determined as before. Then lenf (σ) =∑n−1
j=1 lenf1(σ[ij , ij+1]).

Finally, charatf (σ, k) is determined as follows. Initialize
j = 1, and repeat until k ≤ lenf1(σ[ij , ij+1]): update
k := k − lenf1(σ[ij , ij+1]), and j := j + 1. Return
charatf1(σ[ij , ij+1], k).

6. We skip the cases of the chained sum operators. From the con-
struction of [3], functions containing the chained sum operator
can, in polynomial time, be rewritten to use function composi-
tion instead. Note that we take this approach only for brevity:
actually constructing the machines for chained sum is actually
similar to the other cases presented in this proof.

7. When f = compose(f1, f2). Given an input string σ, let
σ′ be the implicit representation of Jf1K(σ) produced by
isdeff1 , lenf1 and charatf1 . Then, isdeff (σ) = isdeff2(σ′),
lenf (σ) = lenf2(σ′), and charatf (σ, i) = charatf2(σ′, i).

This completes the proof. 2

4.3 Evaluating unrestricted DReX programs is PSPACE-hard
First, we show that the following problems polynomially reduce to
each other:

Theorem 16 (Equivalent Problems). There is a polynomial time
reduction between all of the following problems:

1. given a DReX program f , check whether JfK(ε) is defined;
2. given a DReX program f and an input string σ ∈ Σ∗, check

whether JfK(σ) is defined; and
3. given a DReX program f , an input string σ ∈ Σ∗, and a

potential output string σ′ ∈ Γ∗, check whether JfK(σ) = σ′.

Proof. We perform the following reductions: 1→ 2, 2→ 1, 2→ 3,
and 3→ 2.

1. The reduction 1→ 2 is immediate by setting σ to ε.
2. To reduce the problem 2 → 1, consider a DReX program f

and an input string σ ∈ Σ∗. We construct a program f ′ such
that Jf ′K(ε) is defined iff JfK(σ) is defined. Consider the input
generation program fσ = ε 7→ σ that given the empty input
string ε outputs the string σ and define f ′ = compose(fσ, f).
We then have Jf ′K(ε) = JfK(σ).

3. To reduce the problem 2→ 3, consider a program f and an input
string σ ∈ Σ∗. We construct a program f ′ such that Jf ′K(σ) = ε
iff JfK(σ) is defined. We define f ′ = compose(f, fdef) where
fdef = iterate(true 7→ ε) maps every input string to the
empty output string ε. Notice that fdef is undefined exactly when
the input itself is undefined.

4. We perform the reduction 3 → 2 as follows. Given a DReX
program f , an input string σ ∈ Σ∗, and a candidate output string
σ′ ∈ Γ∗ we construct a DReX program f ′ such that Jf ′K(σ)
is defined iff JfK(σ) = σ′. We define f ′ = compose(f, fσ′)
where fσ′ is defined only on the string σ′. We achieve this by
defining fσ′ = split(x = σ′1 7→ ε, x = σ′2 7→ ε, . . . , x =
σ′|σ′| 7→ ε).

This completes the proof. 2

Next we show that the first problem from theorem 16 is
PSPACE-hard.

Theorem 17 (PSPACE-hardness). Given a DReX program f it is
PSPACE-hard to determine whether JfK(ε) is defined.

Proof. We perform a polynomial time reduction from the problem
of determining the validity of a quantified boolean formula (QBF).
A QBF is a formula

Φ = ∀x1∃x2 . . .∃xnϕ(x1, x2, . . . , xn),

where ϕ(x1, x2, . . . , xn) is a 3CNF formula over the variables
x1, x2, . . . , xn, and the quantifiers in Φ strictly alternate between
universal and existential. The problem of determining the validity
of a QBF formula is PSPACE-complete [24].

We show how, given a QBF Φ we can construct a DReX program
fΦ such that JfK(ε) is defined iff Φ is valid. We first illustrate the
general structure of our construction and then explain each gadget
in detail. The program fΦ is the of the form

compose(f01, f3CNF, fQ),

where:

1. f01 takes as input ε and outputs all the strings in {0, 1}n in
lexicographic order and separated by a #: this program generates
all the possible assignments of the boolean variables.

2. f3CNF takes as input the string of all the assignments produced
by f01 and replaces each assignment in a ∈ {0, 1}n with T if
the assignment a satisfies the 3CNF formula ϕ and F otherwise.

3. fQ takes as input the string over ({T, F}#)∗ and checks
whether such a sequence of satisfying assignments is valid for
the quantified formula Φ. If it is valid it outputs ε and otherwise
it is undefined.

The program f01 is of the form compose(f1, f2, . . . , fn), and
intuitively does the following: (a) f1 produces the output 0#1#, i.e.
all possible assignments of the variable x1, separated by #-s. (b) For
each i > 1, fi takes as input a string in = σ1#σ2# · · ·#σ2i−1#
(all possible assignments of variables x1, x2, . . . , xi−1, and pro-
duces an output string containing all possible valuations of variables
x1, x2, . . . , xi. It does this by copying each assignment in in, and
appending a 0 to the end of the first copy, and a 1 to the end of
the second copy. The program f1 is defined as ε 7→ 0#1#. All
subsequent programs fi, for i > 1, are defined as

fi = let ID{0,1} = iterate(x ∈ {0, 1} 7→ x) in

let app0 = split(ID{0,1},# 7→ 0#) in

let app1 = split(ID{0,1},# 7→ 1#) in

iterate(combine(app0, app1)).

Each fi replaces each substring σ# ∈ {0, 1}∗# with the string
σ0#σ1#.

Assume the 3CNF formula ϕ is of the form c1 ∧ c2 ∧ · · · ∧ cm
where each clause ci is a disjunction of the form li1 ∨ li2 ∨ li3 . The
program f3CNF is of the form

compose(q1, q2, . . . , qm, fclean)



such that after executing compose(q1, q2, . . . , qi) on the sequence
of assignments σ1#σ2# . . .#σ2n#, the output is of the form
t1#t2# . . .#t2n#, where tj = σj if the assignment σj satisfies
all the clauses c1, . . . , ci, and tj = F otherwise. After executing
compose(q1, q2, . . . , qm), the program fclean replaces every tj
different from F with a T , since that assignment satisfied all the
clauses. We construct

qi = iterate(split(ki else ID,# 7→ #)),

where ki maps assignments t which do not satisfy the clause ci to
F , and is undefined otherwise. We construct

ki = split(r1, r2, . . . , rn, ε 7→ F ),

where for each j ∈ {1, 2, . . . , n}, the function rj checks, in case
that the QBF variable xj appears in the clause ci, whether its
assignment causes the clause to be satisfied. We wish ki to be
undefined in this case, and thus we define:

rj =


x ∈ {0} 7→ ε if the literal xj appears in ci,
x ∈ {1} 7→ ε if the literal ¬xj appears in ci, and
x ∈ {0, 1} 7→ ε otherwise.

Note that it is straightforward to simplify a 3CNF formula so that
no clause contains both a variable and its negation.

Last, we describe the program fQ that checks whether the se-
quence of assignments makes the overall formula Φ valid. To un-
derstand how fQ works we first illustrate how a classical algorithm
would now proceed to evaluate the formula Φ. In the classical al-
gorithm for evaluating a QBF, a binary tree of depth n is built to
simulate all the possible assignments of each variable. At the root the
left subtree corresponds to setting the variable x1 to 0 while the right
subtree corresponds to setting it to 1. Each leaf then corresponds to
a complete assignment to each variable, and the formula ϕ can be
evaluated replacing each leaf with T or F (for true and false). The
program compose(f01, f3CNF ) performs this part of the algorithm:
f01 first builds each leaf of the tree and f3CNF replaced each leaf
with T or F . The classical algorithm than proceeds as follows. Pick
a node N(l, r) such that both children l and r are evaluated to either
T or F . The node N corresponds to assigning some variable xi to
either 0 or 1 in some context. If xi is existentially quantified, assign
the node N to the disjunction of the values of l and r, and if xi is
universally quantified, assign the node N to the conjunction of the
values of l and r. The whole tree can then be evaluated in the same
manner. Finally, if the root has value true the formula is valid. The
program fQ performs the described task:

fQ = compose(en, en−1, . . . , e1, ffin)

such that after executing compose(en, en−1, . . . , ei) on the string
produced by f3CNF, the output is the string t1#t2# . . .#t2i−1#
representing the evaluation of each node at level i in the evaluation
tree produced by the classical algorithm we previously described.
Therefore, after executing compose(en, en−1, . . . , e1) the output
will be T# if the formula is valid or F# otherwise. The program

ffin = split(T 7→ ε,# 7→ ε)

will be defined only in the first case, that is, if the formula ϕ is valid.
We now describe the construction of ei. We define the gadgets f∧
and f∨ that given a string over t1#t2# respectively output a string
(t1 ∧ t2)# and (t1 ∨ t2)#. We present only f∧ since f∨ is similar:

f∧T = split(T 7→ T,# 7→ ε, T 7→ ε,# 7→ #)

f∧F = split({T, F} 7→ F,# 7→ ε, {T, F} 7→ ε,# 7→ #)

f∧ = f∧T else f∧F .

f∧T tries to assign T checks whether both assignments to the current
QBF variable evaluate to true, and if so, produces a T#. In all other

cases, f∧F produces the output F#. (Note that this program is, by
design, ill-typed.) If the variable xi is universally quantified, then
ei = iterate(f∧), and otherwise, ei = iterate(f∨). This last
construction completes the reduction of determining the validity
of QBF formulas to the problem of evaluating unrestricted DReX
programs. 2

Putting together theorems 15, 16 and 17, it follows that:

Theorem 18. The following problems are PSPACE-complete:

1. given a program f in DReX check whether JfK(ε) is defined;
2. given a program f in DReX and a string σ ∈ Σ∗ check whether

JfK(σ) is defined;
3. given a program f in DReX, a string σ ∈ Σ∗, and a string
τ ∈ Γ∗, check whether JfK(σ) = τ ;

4.4 Single-pass algorithms for unrestricted DReX
In the proof of theorem 14 we showed that in the absence of
the function composition combinator the dynamic programming
algorithm has complexity O(f |σ|3) where σ is the input string and
f the program. In this section we argue that, if one wants to obtain
an algorithm that is linear in the size of the input, it is necessary to
pay at least an exponential complexity in the size of the program.

DReX operators are similar to those offered by regular expres-
sions (iteration, split, etc. are the broad analogues of Kleene-*,
concatenation, etc.). Since one can evaluate regular expressions effi-
ciently by transforming them into nondeterministic finite automata
one can try to construct an automaton model corresponding to DReX
programs. Unfortunately as we discussed in section 2, DReX com-
binators can also express language intersection and other complex
operations. In the presence of such operations, directly constructing
an automaton model from the program seems hard (see [23], where
the author summarizes the state-of-the-art on matching regular ex-
pressions extended with an intersection operator). The following is
currently the best claim we can make about evaluating unrestricted
DReX programs with a single linear time pass over the input string:

Theorem 19. Given a DReX program f and an input string σ ∈ Σ∗,
we can compute the output JfK(σ) in time linear in the length of the
input string σ, and a tower of exponentials with height O(|f |).

The algorithm compiles f into an equivalent streaming string
transducer (SST) [1] using the procedure described in [3]. An SST
is a finite state machine that reads the input in a left-to-right fashion
and stores intermediate results inside variables. The final output
is a combination of such variables. An SST A can be evaluated
on an input string σ in one pass in time O(|A| |σ|). Since SSTs
are deterministic, operations such as concatenation and iteration
(even in the absence of function composition) cause an exponential
blow-up, making the overall complexity non-elementary.

5. Evaluation
We implemented the algorithms described in this paper, and evalu-
ated their performance on a representative set of text and BibTeX
file transformations. We show that

1. the evaluation algorithm for consistent DReX scales to inputs
with more than 100,000 characters (subsection 5.2.1), and

2. the dynamic programming algorithm presented in section 4.1
does not scale for inputs with more than 3,000 characters
(subsection 5.2.2).

Finally, we remark on the subjective experience of expressing string
transformations using DReX (subsection 5.3).



Program name Size CC (ms)

delete_comm 28 12
insert_quotes 28 6
get_tags 31 6
reverse 5 1
swap_bibtex 1663 262
align_bibtex 3652 537

Table 1: Evaluated programs with sizes and time to check consis-
tency.

5.1 Implementation details
The prototype implementation of DReX was written in Java and
uses the recently released Java SE 8. We used the symbolic automata
library SVPAlib [11] to implement the symbolic operations required
by the consistency-checking algorithm (theorem 3). The set of
characters were all 16-bit UTF-16 code units, and the predicates
were unions of character intervals (such as [a-z, A-Z, 0-9]).

The experiments were run on regular contemporary hardware:
Windows 7 running on a 64-bit quad-core Intel Core i7-2600 CPU,
at 3.40 GHz with 8 GB of RAM. Each experiment was run 10 times
and the results reported are the mean of the obtained running times.

The dynamic programming (DP) algorithm for the extended
version of DReX (theorem 14) is implemented lazily. Each entry
OUT(f, σ, i, j) is only computed and allocated when its value is
required by another entry. Without this technique the algorithm runs
out of memory for inputs of length smaller than 1,000. We also
optimize the DP algorithm to take advantage of the consistency-
checking; for consistent programs the algorithm does not need to
check whether there is more than one way to match a string.

5.2 Benchmark programs
Table 1 shows the programs we considered in our evaluation
together with their sizes and the running time of the consistency-
checking algorithm. These programs are described in appendix A.
Observe that for every program the consistency-checking algorithm
terminates in less than 600 ms.

We evaluated the first four programs on randomly generated text
files of size varying between 1 and 100,000 characters, and evaluated
the more complex functions swap_bibtex and align_bibtex on actual
BibTeX files of size also varying between 1 and 100,000 characters.
We set a timeout of 60 seconds for each operation.

5.2.1 Single-pass algorithm for consistent DReX
Figure 5.1 shows how the running time for the algorithm presented
in section 3 depends linearly on the size of the input. For inputs
up to 100,000 characters each program takes less than 8 seconds to
compute the output. Also observe that the evaluation algorithm can
successfully handle reasonably large programs such as align_bibtex
which has an AST with 3652 nodes.

5.2.2 Dynamic programming for unrestricted DReX
Figure 5.2 shows the running time for the dynamic programming
algorithm presented in section 4.1. The x-axis is shown in log
scale to better appreciate the difference between the different
programs. From the figure we can see that the running time depends
polynomially on the length of the input and, as a consequence, all
the considered programs time out for inputs with more than 70,000
characters. In some cases large programs such as swap_bibtex
execute faster than smaller programs such as get_tags. This is due
to the fact that our implementation uses some optimizations that
may depend on the shape of the program: for example in the case
of programs that are only defined on strings of a fixed length k, the
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Figure 5.1: Evaluation time for the single-pass algorithm.
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Figure 5.2: Evaluation time for dynamic programming algorithm.
Note that the x-axis in log-scale.

algorithm is evaluated only for those i and j such that j − i = k.
In conclusion, although all DReX programs can be evaluated using
the dynamic programming algorithm presented in section 4.1, the
procedure does not scale to large inputs.

5.3 User experience and comparison to existing tools
We were able to easily program several non-trivial string-to-string
transformations without having to worry about efficiency. The main
restrictions of the streaming evaluation algorithm are that programs
cannot use compositions and have to be consistent. In our case study
we did not find instances where composition was required and all the
natural implementations of our programs were consistent. Moreover,
in many cases the consistency algorithm helped us in identifying
sources of ambiguity that caused our program to be incorrect. As
an anecdotal account, we had mistakenly concatenated the sub-
program copy_spaces = iterate(space(x) 7→ x), which copies
all whitespace characters (including tabs and newlines), with itself.
In this case, the type-checker warned us that this concatenation was
ambiguous on the input string “\n”. This was clearly a bug in our
script, and would have led to unexpected behavior even if we had
used the dynamic programming evaluation algorithm.

We also programmed the benchmark transformations in sed,
AWK, and Perl. Regular-expression based substitution, as present in
all of these tools, is very efficient and usable to substitute or delete
substrings based on patterns. This includes the benchmark programs
delete_comm and insert_quotes, for which the sed implementations
were ≈ 6 times faster than the DReX ones. On the other hand,
reverse, swap_bibtex and align_bibtex were hard to express in line-
based tools such as sed and AWK. The Perl implementations of
these functions were ≈ 2 times faster than ours.

6. Related Work
Regular string transformations. This class of string-to-string
transformations is robust and has many equivalent characteriza-
tions, including deterministic two-way string transducers [16, 18],
streaming string transducers [1], transducers with origin informa-
tion [6], and MSO-definable string transformations [10]. Regular



string transformations are also closed under composition [9], and
enjoy decidable equivalence [21]. Alur et al proposed a set of com-
binators that captures the set of regular string-to-string transforma-
tions [3] and this paper builds on it. The results in [3] only focus on
expressiveness and do not try to answer questions about complex-
ity. In particular the transformation to streaming string transducers
proposed in [3] has non-elementary complexity in the size of the
program. In this paper, however, we are primarily driven by issues
related to the complexity of evaluation.

DSLs for string transformations. DSLs for string transformations
mainly fall into two classes: string specific utilities such as sed,
AWK, and Perl, and transducer-based languages [13, 15, 26].

Utilities such as sed, AWK, and Perl provide the programmer
with powerful programming constructs to manipulate strings. These
languages are Turing-complete and in general cannot be efficiently
compiled into fast executable code and are not amenable to algo-
rithmic analysis. We also argued in section 5.3 that some of the
programs that can be naturally expressed in DReX are actually hard
to define using these tools.

All the existing transducer-based languages simply act as fron-
tends to an underlying transducer model that they use to reason
about the implemented programs. BEK uses symbolic finite transduc-
ers [26] and it has been used to analyze string sanitization functions.
BEX is a frontend for extended symbolic finite transducers [12, 13]
and it has been used to prove the correctness of string encoders and
decoders such as Base64. FAST is based on symbolic tree trans-
ducers with regular look-ahead [15] and it is used to reason about
programs that manipulate strings and trees over arbitrary domains.
While these languages enable powerful analysis and verification
techniques, (a) their semantics are tightly coupled to the transducer
model, forcing the programmer to think in terms of a finite state ma-
chine, and a left-to-right reading of the input string, and (b) they only
capture a strict subset of the class of regular string transformations;
none of these models can reverse a string.

Another language based on automata is Boomerang, a bidirec-
tional programming language for string editing [5]. Bidirectional
programs contain combinators for extracting a view from a concrete
input and then reconstructing an updated input from the updated
view. Boomerang also supports extractions where each record is
associated with a “key”. Although Boomerang has a similar type-
system to that of DReX (it forces unambiguous operations), we are
not aware of a complexity analysis for the problem of evaluating
a Boomerang program. The goals of Boomerang and DReX are
orthogonal: the former focuses on bidirectional transformations,
while the latter focuses on efficiently evaluating all regular string
transformations. Despite this difference we believe that Boomerang
could benefit from the evaluation techniques proposed in this paper.

Efficient string manipulation. Little effort has been devoted to
design languages and algorithms to efficiently evaluate string trans-
formations in linear time. The general approach has been to identify
an automaton model that processes the string in a single left-to-right
pass and can express interesting programs. However, all existing
tools that use this approach [13, 15, 26] take advantage of com-
position or combination operators that make the compilation to
transducers exponential in the size of the program. Streaming string
transducers (SST) [1] capture all programs that can be written in
DReX and can be executed in a single left-to-right pass over the in-
put. However, transforming DReX programs into SSTs also causes
an super-exponential blow-up in the size of the input program.

In the context of XML processing numerous languages or
fragments have been proposed for efficiently querying (XPath,
XQuery), stream processing (STX [4]), and manipulating (XSLT)
XML trees. Some of these languages particularly focus on efficiently
processing the input in a linear time left-to-right pass. Although

in the case of XML documents with bounded depth some XML
transformations can be described in DReX, the main goal of DReX
remains that of providing a well-defined fragment (regular) of string
(and not tree) transformations that can be efficiently executed.

Future Directions. A major motivation for choosing the class
of regular string transformations was the decidability of analysis
questions. In particular, consider regular type-checking: given a
program f and two regular languages I and O, is it the case that for
every input σ ∈ I , JpK(σ) ∈ O? Such a tool would be helpful to
audit string sanitizers against specific kinds of attacks. Implementing
these procedures is an open research direction.

In FlashFill [20] simple string transformations can be synthesized
from examples. The expressiveness of the combinators used in
FlashFill has not been characterized. Can DReX programs be
efficiently learnt or synthesized from input-output examples?

Recently Mytkowicz et al. [22] proposed new techniques for
evaluating finite automata in a data-parallel fashion. Can these
techniques be used to parallelize the evaluation algorithm proposed
in this paper?

Extending our techniques to tree transformations is another open
problem. Streaming tree transducers (STTs) [2] are to regular tree
transformations (or equivalently macro tree transducers [19], and
MSO-definable tree transformations [17]) as SSTs are related to
regular string transformations. Can we design a similar declarative
language to express regular tree transformations?

Finally, certain operations such as counting the number of
substring matches, sorting the elements of a dictionary, or deleting
duplicate entries in a list are not regular string transformations.
Extending DReX with non-regular primitives but which can still be
efficiently evaluated is an interesting direction of future work.

7. Conclusion
We presented DReX, a declarative language for describing regu-
lar string transformations. The basic transformers are symbolic, so
DReX can succinctly express transformations even over large alpha-
bets such as Unicode. We demonstrated that the evaluation problem
for unrestricted DReX is PSPACE-complete, and so we considered a
restricted fragment, consistent DReX which permits a fast single-
pass evaluation algorithm, and still retains expressive completeness.
In experiments over representative string transformations such as
BibTeX file manipulations the evaluation algorithm for consistent
DReX scaled to process thousands of characters per second.
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A. Examples of Consistent DReX Programs
This appendix contains simplified descriptions of the consistent
DReX programs that we used in our experiments in section 5. We
will use the following macros in our definitions.

copy(ϕ) = ϕ(x) 7→ [x]

del(ϕ) = ϕ(x) 7→ [ ]

iterate–plus(f) = split(iterate(f), f)

split(f1, . . . , fn) = split(f1, split(. . . , fn))

copy(ϕ) and del(ϕ) respectively copy or delete a character match-
ing ϕ. When the predicate is of the form x = c we simply write c.
iterate–plus(f) repeats the function f one or more times. The
last macro simply repeats the split sum operator on all the arguments.

A.1 Delete one-line comments from a program
This program deletes all one-line comments from a file (i.e. the
lines starting with //). We define each component of the program
separately. The program del_comm_line deletes strings of the form
“//σ\n”, where σ does not contain any occurrence of the new line
character “\n”.

del_slashes = split(del(‘/’), del(‘/’)),

del_non_nl = iterate(del(x 6= ‘\n’)),

del_comm = split(del_slashes, del_non_nl),

del_comm_line = split(del_comm, del(‘\n’)).

The program copy_line copies strings of the form “σ\n”, where
the string σ is either the empty string, or it does not start with the
character ‘/’.

copy_non_nl = iterate(copy(x 6= ‘\n’)),

copy_txt = split(copy(x 6= ‘/’), copy_non_nl),

copy_line = copy(‘\n’) else split(copy_txt, copy(‘\n’)).

The program process_line reads a line and deletes it if it is a
comment line and copies it otherwise. The last line might not
end with a ‘\n’ and the program process_last_line deals with this
exception. Finally the program delete_comm repeats process_line
and at the end processes the last line, therefore deleting all the
one-line comments in the input.

process_line = del_comm_line else copy_line,

last_line = del_comm else copy_txt,

process_last_line = process_line else last_line,

process_lines = iterate(process_line),

delete_comm = split(process_lines, process_last_line).

A.2 Insert quotes around words
This program inserts quotes (‘"’) around every alphabetic substring
appearing in the input. The program add_qts_skip, given a string
σ1σ2 where σ1 is alphabetic and σ2 does not contain any letter,



outputs the string “"σ1"σ2”.

copy_astr = iterate–plus(copy([a-zA-Z])),

copy_nastr = iterate–plus(copy(x /∈ [a-zA-Z])),

add_qt = ε 7→ [‘"’],

add_qts = split(add_qt, copy_astr, add_qt),

add_qts_skip = split(add_qts, copy_nastr).

The program insert_quotes repeats the add_qts function. Since the
string might start with a symbol that is not alphabetic the program
start deals with this case. Similarly the program ending checks
whether the string does not end with an alphabetic sequence. Finally,
the program insert_quotes inserts quotes around every alphabetic
substring in the input.

start = iterate(copy(x /∈ [a-zA-Z])),

ending = add_qts else ε 7→ [],

repeat_add = iterate(add_qts_skip),

insert_quotes = split(start, repeat_add, ending).

A.3 Extracting tags from a malformed XML file
This program extracts and concatenates all the substrings of the
form <σ> where σ does not contain any character < or > (this is
a generalization of a program shown in [26]). For simplicity we
assume that the string does not contain occurrences of the substring
“<>”. The program copy_match copies any string of the form <σ>
where σ does not contain any character < or >.

copy_ntag = iterate–plus(copy(x /∈ [<>])),

copy_match = split(copy(‘<’), copy_ntag, copy(‘>’)).

The program del_not_match deletes any string that does not contain
a substring of the form <s> where s does not contain any char-
acter < or >. The program del_not_match looks for the following
pattern: s = σ1> · · · >σi< · · · <σn (with i ≥ 1). Its sub-program
del_close_op deletes all the string of the described form containing
at least one open character (‘<’).

del_not_opn = iterate(del(x 6= ‘<’)),

del_not_cls = iterate(del(x 6= ‘>’)),

del_opn_not_cls = split(del(‘<’), iterate(del(x 6= ‘>’))),

del_close_op = split(del_not_opn, del_opn_not_cls),

del_not_match = del_not_opn else del_close_op.

The program find_match keeps looking for tags and removes even-
tual non-matches at the end of the string. Finally, get_tags repeats
find_match, and therefore outputs all the substrings of the form <σ>.

find_match = split(del_not_match, copy_match),

repeat_get_tags = iterate(find_match),

get_tags = split(repeat_get_tags, del_not_match).

A.4 Reversing a dictionary
Given a dictionary of the form σ1;σ2; · · · ;σn; we want to output
the reverse σn;σn−1; · · · ;σ1;. The program copy_stretch copies
a string of the form σ; such that σ does not contain a ‘;’. The
program reverse implements the final transformation by left iterating
copy_stretch.

copy_stretch = split(iterate(copy(x 6= ‘;’)), copy(‘;’)),

reverse = left–iterate(copy_stretch).

A.5 Reformatting BibTeX files
In this section we define two functions that operate over BibTeX
files. The first function, swap_bibtex, reorders attributes within each

BibTeX entry by moving the title to the top. The second function,
align_bibtex, rearranges a misaligned file by moving the title of
each entry inside the previous entry.

To do so we first define a few auxiliary functions that are used
for copying and deleting alphabetic strings, spaces, and delimiters.

copy_astr = iterate–plus(copy([a-zA-Z])),

copy_anum = iterate–plus(copy([a-zA-Z0-9])),

copy_spaces = iterate(copy([\n \r \b \t])),

del_astr = iterate–plus(del([a-zA-Z])).

It is easy to see how given a DReX program that copies a pattern, one
can easily define a DReX program that deletes the same pattern. To
simplify the presentation in the following we assume that for every
program of the form copy_something there is an analogous program
del_something that is defined on the same input as copy_something
but always outputs the empty string.

The program copy_header copies the header of an entry. In the
example of figure A.1, it copies the string “@book{Gal1638” along
with the following spaces.

copy_header = split(copy(‘@’), copy_astr, copy(‘{’),

copy_anum, copy(‘,’), copy_spaces).

We now define macros for copying and deleting a particular string s
or a set of strings.

copy(s) = split(copy(s[1]), . . . , copy(s[|s|])),
copy({σ1, . . . , σn}) = copy(σ1) else . . . else copy(σn).

The program copy_title copies the string “title”, and the program
copy_non_title copies every attribute name different from “title”.
We omit the full list of attributes for readability.

copy_title = copy(‘title’),

copy_non_title = copy({‘author’, ‘year’, ‘place’, . . .}).

The program copy_att_value copies the value of an attribute along
with the surrounding parentheses (i.e. “ = { Elzevir},”).

copy_non_par = iterate(copy(x /∈ [}{])),

copy_att_value = split(copy_spaces, copy(‘=’),

copy_spaces, copy(‘{’), copy_non_par,

copy(‘}’), copy(‘,’), copy_spaces).

The program copy_title_att copies a complete title attribute (i.e.
“title = {Two New Sciences},”), while copy_non_title_att
copies a complete non-title attribute.

copy_title_att = split(copy_title, copy_att_value),

copy_non_title_att = split(copy_non_title, copy_att_value).

Given a list of attributes, the program title_only copies the title
and deletes all the non-title attributes, the program all_but_title
deletes the title and copies all the other attributes, and the program
copy_attrs copies the entire list.

title_only = iterate(copy_title else del_non_title),

all_but_title = iterate(del_title else copy_non_title),

all_but_title = iterate(copy_title else copy_non_title).

A.5.1 Polishing a BibTeX file
The following function defines a typical transformation a paper
author may perform on BibTeX files. The program swap_bibtex
moves the title attribute to the top of each entry of an input BibTeX
file. Figure A.1 shows the result of applying swap_bibtex to a
particular BibTeX entry. In this presentation we assume that every



@book{Gal1638 ,
publisher = {Elzevir},
place = {Leiden},
year = {1638} ,
title = {Two New Sciences},
author = {Galileo},

}

@book{Gal1638 ,
title = {Two New Sciences},
publisher = {Elzevir},
place = {Leiden},
year = {1638} ,
author = {Galileo},

}

Figure A.1: Example application of the transformation swap_bibtex from the entry on the left to the entry on the right.

attribute is followed by a comma.7 The program title_first copies
the title first and then all the other attributes, therefore obtaining the
desired attribute reordering.

title_first = combine(title_only, all_but_title).

The program swap_entry performs the operation of figure A.1 for a
single BibTeX entry.

swap_entry = split(copy_header, title_first,

copy(‘}’), copy_spaces).

Finally, the program swap_bibtex applies the transformation to all
the entries in the file.

swap_bibtex = iterate(swap_entry).

A.5.2 Aligning titles in a misaligned BibTeX file
Assume that by mistake the titles of a BibTeX file have been
misaligned: the title of the first entry now appears in the second one,
the second title appears in the third entry and so on. The function
align_bibtex, given such a misaligned file, moves the title of each
entry i+ 1 to the correct entry i, and since the last entry would now
not have a title, it gets deleted. This program requires the use of the
chained sum operator in order to process two BibTeX entries at a
time (first and second, second and third, and so on). The program
header_only_entry, given a single BibTeX entry, copies only the
header and deletes the rest of the entry.

header_only_entry = split(copy_header, del_attrs,

del(‘}’), del_spaces).

The program title_only_entry, given a single BibTeX entry, copies
only the title and deletes the rest of the entry, while the program
all_but_title_entry, deletes the header, the title, and copies the rest
of the entry.

title_only_entry = split(del_header, title_only,

del(‘}’), del_spaces),

all_but_title_entry = split(del_header, all_but_title,

copy(‘}’), copy_spaces).

The program delete_entry deletes a single BibTeX entry.

delete_entry = split(del_header, del_attrs,

del(‘}’), del_spaces).

The program move_title, given two BibTeX entries outputs the first
entry where the title has been replaced with the title of the second
entry: it first copies the header of the first entry, then the title of the
second entry, and then the remaining attributes of the first entry.

move_title = combine(

split(header_only_entry, title_only_entry),

split(all_but_title_entry, delete_entry)).

7 The actual program used for the experiments is able to deal with missing
commas.

Finally, the program align_bibtex applies the transformation to all
the entries in the file. We omit the regular expression describing
the format of an entry in the chain operator since DReX can infer it
automatically.

align_bibtex = chain(move_title).
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