
DReX: A Declarative Language for Efficiently
Evaluating Regular String Transformations

Rajeev Alur Loris D’Antoni Mukund Raghothaman

POPL 2015

1

DReX is a DSL for String Transformations
align-bibtex

...

@book{Book1 ,
title = {Title0},
author = {Author1},
year = {Year1},

}

@book{Book2 ,
title = {Title1},
author = {Author2},
year = {Year2},

}

...

...

@book{Book1 ,
title = {Title1},
author = {Author1},
year = {Year1},

}

...

2

Describing align-bibtex Using DReX
The simpler issue of make-entry

Given two entries, Entry1 and Entry2, make-entry outputs the
title of Entry2 and the remaining body of Entry1

Entry1 Entry2

All but title Title only

3

Describing align-bibtex Using DReX
align-bibtex = chain(make-entry,REntry)

Entry1 Entry2 Entry3 Entryk−1 Entryk

make-entry
(Entry1Entry2)

make-entry
(Entry2Entry3)

make-entry
(Entry3Entry4)

make-entry
(Entryk−1Entryk)

Function combinators — such as chain — combine smaller
functions into bigger ones

4

Why DReX?
I DReX is declarative

Languages, Σ∗ → bool ≡ Regular expressions
Tranformations, Σ∗ → Γ∗ ≡ DReX

I DReX is fast: Streaming evaluation algorithm for well-typed
expressions

I Based on robust theoretical foundations
I Expressively equivalent to regular string transformations
I Multiple characterizations: two-way finite state transducers,

MSO-definable graph transformations, streaming string
transducers

I Closed under various operations: function composition, regular
look-ahead etc.

I DReX supports algorithmic analysis
I Is the transformation well-defined for all inputs?
I Does the output always have some “nice” property?
∀σ, is it the case that f (σ) ∈ L?

I Are two transformations equivalent?
5

DReX is publicly available! Go to drexonline.com

6

http://drexonline.com

Function Combinators

7

Base functions: σ 7→ γ

Map input string σ to γ, and undefined everywhere else

“.c” 7→ “.cpp”

σ ∈ Σ∗ and γ ∈ Γ∗ are constant strings
Analogue of basic regular expressions: {σ}, for σ ∈ Σ∗

8

Conditionals: try f else g

If f (σ) is defined, then output f (σ), and otherwise output g(σ)

try [0-9]∗ 7→ “Number”

else [a-z]∗ 7→ “Name”

Analogue of unambiguous regex union

9

Split sum: split(f , g)

Split σ into σ = σ1σ2 with both f (σ1) and g(σ2) defined. If
the split is unambiguous then split(f , g)(σ) = f (σ1)g(σ2)

σ1 σ2

f (σ1) g(σ2)

f g

I Analogue of regex concatenation
I If title maps a BibTeX entry to its title, and body maps a

BibTeX entry to the rest of its body, then
make-entry = split(body, title)

10

Iterated sum: iterate(f)

Split σ = σ1σ2 . . . σk , with all f (σi) defined. If the split is
unambiguous, then output f (σ1)f (σ2) . . . f (σk)

σ1 σ2 σk

f (σ1) f (σ2) f (σk)

f f f

I Kleene-*
I If echo echoes a single character, then id = iterate(echo) is the

identity function

11

Left-iterated sum: left-iterate(f)

Split σ = σ1σ2 . . . σk , with all f (σi) defined. If the split is
unambiguous, then output f (σk)f (σk−1) . . . f (σ1)

σ1 σk−1 σk

f (σk) f (σk−1) f (σ1)

Think of string reversal: left-iterate(echo)

12

“Repeated” sum: combine(f , g)

combine(f , g)(σ) = f (σ)g(σ)

σ

f (σ) g(σ)

f g

I No regex equivalent
I σ 7→ σσ: combine(id, id)

13

Chained sum: chain(f ,R)

σ1 ∈ L(R) σ2 ∈ L(R) σ3 ∈ L(R) σk ∈ L(R)

f (σ1σ2) f (σ2σ3) f (σ3σ4) f (σk−1σk)

And similarly for left-chain(f ,R)

14

Summary of Function Combinators

Purpose Regular Transformations Regular Expressions

Base ⊥, σ 7→ γ ∅, {σ}
Concatenation split(f , g), left-split(f , g) R1 ·R2
Union try f else g R1 ∪ R2
Kleene-* iterate(f), left-iterate(f) R∗

Repetition combine(f , g)
New!Chained sum chain(f ,R),

left-chain(f ,R)

15

Regular String Transformations

Or, why our choice of combinators was not arbitrary

Languages, Σ∗ → bool ≡ DFA
Tranformations, Σ∗ → Γ∗ ≡ ?

16

Historical Context
Regular languages

Beautiful theory

Regular expressions ≡ DFA

Analysis questions (mostly) efficiently decidable

Lots of practical implementations

17

String Transducers

One-way transducers: Mealy machines
a/babc

Folk knowledge [Aho et al 1969]
Two-way transducers strictly more powerful than one-way transducers

Gap includes many interesting transformations
Examples: string reversal, copy, substring swap, etc.

18

String Transducers
Two-way finite state transducers

I Known results
I Closed under composition [Chytil, Jákl 1977]
I Decidable equivalence checking [Gurari 1980]
I Equivalent to MSO-definable string transformations [Engelfriet,

Hoogeboom 2001]

I Streaming string transducers: Equivalent one-way deterministic
model with applications to the analysis of list-processing
programs [Alur, Černý 2011]

I Two-way finite state transducers are our notion of regularity

19

Function Combinators are Expressively Complete

Theorem (Completeness, Alur et al 2014)

All regular string transformations can be expressed using the
following combinators:

I Basic functions: ⊥, σ 7→ γ,
I split(f , g), left-split(f , g),
I try f else g ,
I iterate(f), left-iterate(f),
I combine(f , g),
I chained sums: chain(f ,R), and left-chain(f ,R).

20

Evaluating DReX Expressions

21

The Anatomy of a Streaming Evaluator

(a, 1) (b, 2) (b, 3)

(Result, γ)

(a, 4) (b, 5)

(Result, γ′)

(σn, n)

Evaluator
for f

(σi , i)

(Result, γ)

22

The Case of split(f , g)

1 i j n

f defined

f defined g defined

Tf
Tg

(Start, i)

(σi , i)

(Result,

j ,

γ)

(Kill, j)

(Start, i)

(σi , i)

(Result,

j ,

γ)

(Kill, j)

Thread starting
at index

Index at which
Tf responded

Result reported
by Tf

2 9 aaab
3 7 abbab
.

23

The Case of split(f , g)

1 i j n

f defined

f defined g defined

Tf
Tg

(Start, i)

(σi , i)

(Result,

j ,

γ)

(Kill, j)

(Start, i)

(σi , i)

(Result,

j ,

γ)

(Kill, j)

Thread starting
at index

Index at which
Tf responded

Result reported
by Tf

2 9 aaab
3 7 abbab
.

23

The Case of split(f , g)

1 i j nf defined
f defined g defined

Tf
Tg

(Start, i)

(σi , i)

(Result,

j ,

γ)

(Kill, j)

(Start, i)

(σi , i)

(Result,

j ,

γ)

(Kill, j)

Thread starting
at index

Index at which
Tf responded

Result reported
by Tf

2 9 aaab
3 7 abbab
.

23

The Case of split(f , g)

1 i j nf defined
f defined g defined

Tf
Tg

(Start, i)

(σi , i)

(Result, j , γ)

(Kill, j)

(Start, i)

(σi , i)

(Result, j , γ)

(Kill, j)

Thread starting
at index

Index at which
Tf responded

Result reported
by Tf

2 9 aaab
3 7 abbab
.

23

The Case of split(f , g)

1 i j nf defined
f defined g defined

Tf
Tg

(Start, i)

(σi , i)

(Result, j , γ)

(Kill, j)

(Start, i)

(σi , i)

(Result, j , γ)

(Kill, j)

Thread starting
at index

Index at which
Tf responded

Result reported
by Tf

2 9 aaab
3 7 abbab
.

23

The Case of split(f , g)

1 i j nf defined
f defined g defined

Tf
Tg

(Start, i)

(σi , i)

(Result, j , γ)

(Kill, j)

(Start, i)

(σi , i)

(Result, j , γ)

(Kill, j)

Thread starting
at index

Index at which
Tf responded

Result reported
by Tf

2 9 aaab
3 7 abbab
.

23

The Case of split(f , g)

I What if two threads of Tg report results simultaneously?

f defined g defined

f defined g defined

I Statically disallow!
I split(f , g) is well-typed iff

I both f and g are well-typed, and
I their domains are unambiguously concatenable

24

Main Result

Theorem

1. All regular string transformations can be expressed as well-typed
DReX expressions.

2. DReX expressions can be type-checked in O(poly(|f |, |Σ|)).
3. Given a well-typed DReX expression f , and an input string σ,

f (σ) can be computed in time O(|σ|, poly(|f |)).

25

Summary of Typing Rules

I ⊥, σ 7→ γ are always well-typed
I split(f , g) and left-split(f , g) are well-typed iff

I f and g are well-typed, and
I Dom(f) and Dom(g) are unambiguously concatenable

I try f else g is well-typed iff
I f and g are well-typed, and
I Dom(f) and Dom(g) are disjoint

I iterate(f) and left-iterate(f) are well-typed iff
I f is well-typed, and
I Dom(f) is unambiguously iterable

I chain(f ,R) and left-chain(f ,R) are well-typed iff
I f is well-typed, R is an unambiguous regular expression,
I Dom(f) is unambiguously iterable, and
I Dom(f) = JR ·RK

26

Experimental Results

27

Experimental Results
Streaming evaluation algorithm for well-typed expressions

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000 100000

se
co
nd

s

characters

delete-comm
insert-quotes
get-tags
reverse
swap-bibtex
align-bibtex

I align-bibtex has 3500 nodes in syntax tree, typechecks in ≈half
a second

I Type system did not get in the way

28

Conclusion

I Introduced a DSL for regular string transformations
I Described a fast streaming algorithm to evaluate well-typed

expressions

29

Conclusion
Summary of operators

Purpose Regular Transformations Regular Expressions

Base ⊥, σ 7→ γ ∅, {σ}
Concatenation split(f , g), left-split(f , g) R1 ·R2
Union try f else g R1 ∪ R2
Kleene-* iterate(f), left-iterate(f) R∗

Repetition combine(f , g)
New!Chained sum chain(f ,R),

left-chain(f ,R)

30

Future Work

I Implement practical programmer assistance tools
I Static: Precondition computatation, equivalence checking
I Runtime: Debugging aids

I Theory of regular functions
I Automatically learn transformations from teachers (L*), from

input / output examples, etc.
I Trees to trees / strings (Processing hierarchical data, XML

documents, etc.)
I ω-strings to strings

I Non-regular extensions
I “Count number of a-s in a string”

31

Thank you! Questions?

drexonline.com

32

http://drexonline.com

What About Unrestricted DReX Expressions?

33

Evaluating Unrestricted DReX Expressions is Hard
Or, why the typing rules are essential

I With function composition, it is PSPACE-complete
I combine(f , g) is defined iff both f and g are defined

Flavour of regular expression intersection
The best algorithms for this are either

I Non-elementary in regex size, or
I Cubic in length of input string

34

	Introduction
	Function Combinators
	Regular String Transformations
	Evaluating DReX Expressions
	Experimental Results
	Conclusion
	Appendix
	What About Unrestricted DReX Expressions?

