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DReX is a DSL for String Transformations
align-bibtex

...

@book{Book1 ,
title = {Title0},
author = {Author1},
year = {Year1},

}

@book{Book2 ,
title = {Title1},
author = {Author2},
year = {Year2},

}

...

...

@book{Book1 ,
title = {Title1},
author = {Author1},
year = {Year1},

}

...
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Describing align-bibtex Using DReX
The simpler issue of make-entry

Given two entries, Entry1 and Entry2, make-entry outputs the
title of Entry2 and the remaining body of Entry1

Entry1 Entry2

All but title Title only
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Describing align-bibtex Using DReX
align-bibtex = chain(make-entry,REntry)

Entry1 Entry2 Entry3 Entryk−1 Entryk

make-entry
(Entry1Entry2)

make-entry
(Entry2Entry3)

make-entry
(Entry3Entry4)

make-entry
(Entryk−1Entryk )

Function combinators — such as chain — combine smaller
functions into bigger ones
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Why DReX?
I DReX is declarative

Languages, Σ∗ → bool ≡ Regular expressions
Tranformations, Σ∗ → Γ∗ ≡ DReX

I DReX is fast: Streaming evaluation algorithm for well-typed
expressions

I Based on robust theoretical foundations
I Expressively equivalent to regular string transformations
I Multiple characterizations: two-way finite state transducers,

MSO-definable graph transformations, streaming string
transducers

I Closed under various operations: function composition, regular
look-ahead etc.

I DReX supports algorithmic analysis
I Is the transformation well-defined for all inputs?
I Does the output always have some “nice” property?
∀σ, is it the case that f (σ) ∈ L?

I Are two transformations equivalent?
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DReX is publicly available! Go to drexonline.com
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http://drexonline.com


Function Combinators
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Base functions: σ 7→ γ

Map input string σ to γ, and undefined everywhere else

“.c” 7→ “.cpp”

σ ∈ Σ∗ and γ ∈ Γ∗ are constant strings
Analogue of basic regular expressions: {σ}, for σ ∈ Σ∗
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Conditionals: try f else g

If f (σ) is defined, then output f (σ), and otherwise output g(σ)

try [0-9]∗ 7→ “Number”

else [a-z]∗ 7→ “Name”

Analogue of unambiguous regex union
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Split sum: split(f , g)

Split σ into σ = σ1σ2 with both f (σ1) and g(σ2) defined. If
the split is unambiguous then split(f , g)(σ) = f (σ1)g(σ2)

σ1 σ2

f (σ1) g(σ2)

f g

I Analogue of regex concatenation
I If title maps a BibTeX entry to its title, and body maps a

BibTeX entry to the rest of its body, then
make-entry = split(body, title)
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Iterated sum: iterate(f )

Split σ = σ1σ2 . . . σk , with all f (σi) defined. If the split is
unambiguous, then output f (σ1)f (σ2) . . . f (σk)

σ1 σ2 σk

f (σ1) f (σ2) f (σk)

f f f

I Kleene-*
I If echo echoes a single character, then id = iterate(echo) is the

identity function

11



Left-iterated sum: left-iterate(f )

Split σ = σ1σ2 . . . σk , with all f (σi) defined. If the split is
unambiguous, then output f (σk)f (σk−1) . . . f (σ1)

σ1 σk−1 σk

f (σk) f (σk−1) f (σ1)

Think of string reversal: left-iterate(echo)
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“Repeated” sum: combine(f , g)

combine(f , g)(σ) = f (σ)g(σ)

σ

f (σ) g(σ)

f g

I No regex equivalent
I σ 7→ σσ: combine(id, id)
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Chained sum: chain(f ,R)

σ1 ∈ L(R) σ2 ∈ L(R) σ3 ∈ L(R) σk ∈ L(R)

f (σ1σ2) f (σ2σ3) f (σ3σ4) f (σk−1σk)

And similarly for left-chain(f ,R)
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Summary of Function Combinators

Purpose Regular Transformations Regular Expressions

Base ⊥, σ 7→ γ ∅, {σ}
Concatenation split(f , g), left-split(f , g) R1 ·R2
Union try f else g R1 ∪ R2
Kleene-* iterate(f ), left-iterate(f ) R∗

Repetition combine(f , g)
New!Chained sum chain(f ,R),

left-chain(f ,R)
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Regular String Transformations

Or, why our choice of combinators was not arbitrary

Languages, Σ∗ → bool ≡ DFA
Tranformations, Σ∗ → Γ∗ ≡ ?
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Historical Context
Regular languages

Beautiful theory

Regular expressions ≡ DFA

Analysis questions (mostly) efficiently decidable

Lots of practical implementations
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String Transducers

One-way transducers: Mealy machines
a/babc

Folk knowledge [Aho et al 1969]
Two-way transducers strictly more powerful than one-way transducers

Gap includes many interesting transformations
Examples: string reversal, copy, substring swap, etc.
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String Transducers
Two-way finite state transducers

I Known results
I Closed under composition [Chytil, Jákl 1977]
I Decidable equivalence checking [Gurari 1980]
I Equivalent to MSO-definable string transformations [Engelfriet,

Hoogeboom 2001]

I Streaming string transducers: Equivalent one-way deterministic
model with applications to the analysis of list-processing
programs [Alur, Černý 2011]

I Two-way finite state transducers are our notion of regularity
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Function Combinators are Expressively Complete

Theorem (Completeness, Alur et al 2014)

All regular string transformations can be expressed using the
following combinators:

I Basic functions: ⊥, σ 7→ γ,
I split(f , g), left-split(f , g),
I try f else g ,
I iterate(f ), left-iterate(f ),
I combine(f , g),
I chained sums: chain(f ,R), and left-chain(f ,R).
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Evaluating DReX Expressions
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The Anatomy of a Streaming Evaluator

(a, 1) (b, 2) (b, 3)

(Result, γ)

(a, 4) (b, 5)

(Result, γ′)

(σn, n)

Evaluator
for f

(σi , i)

(Result, γ)
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The Case of split(f , g)

1 i j n

f defined

f defined g defined

Tf
Tg

(Start, i)

(σi , i)

(Result,

j ,

γ)

(Kill, j)

(Start, i)

(σi , i)

(Result,

j ,

γ)

(Kill, j)

Thread starting
at index

Index at which
Tf responded

Result reported
by Tf

2 9 aaab
3 7 abbab
. . . . . . . . .
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The Case of split(f , g)

I What if two threads of Tg report results simultaneously?

f defined g defined

f defined g defined

I Statically disallow!
I split(f , g) is well-typed iff

I both f and g are well-typed, and
I their domains are unambiguously concatenable
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Main Result

Theorem

1. All regular string transformations can be expressed as well-typed
DReX expressions.

2. DReX expressions can be type-checked in O(poly(|f |, |Σ|)).
3. Given a well-typed DReX expression f , and an input string σ,

f (σ) can be computed in time O(|σ|, poly(|f |)).
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Summary of Typing Rules

I ⊥, σ 7→ γ are always well-typed
I split(f , g) and left-split(f , g) are well-typed iff

I f and g are well-typed, and
I Dom(f ) and Dom(g) are unambiguously concatenable

I try f else g is well-typed iff
I f and g are well-typed, and
I Dom(f ) and Dom(g) are disjoint

I iterate(f ) and left-iterate(f ) are well-typed iff
I f is well-typed, and
I Dom(f ) is unambiguously iterable

I chain(f ,R) and left-chain(f ,R) are well-typed iff
I f is well-typed, R is an unambiguous regular expression,
I Dom(f ) is unambiguously iterable, and
I Dom(f ) = JR ·RK
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Experimental Results
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Experimental Results
Streaming evaluation algorithm for well-typed expressions
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I align-bibtex has 3500 nodes in syntax tree, typechecks in ≈half
a second

I Type system did not get in the way
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Conclusion

I Introduced a DSL for regular string transformations
I Described a fast streaming algorithm to evaluate well-typed

expressions
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Conclusion
Summary of operators

Purpose Regular Transformations Regular Expressions

Base ⊥, σ 7→ γ ∅, {σ}
Concatenation split(f , g), left-split(f , g) R1 ·R2
Union try f else g R1 ∪ R2
Kleene-* iterate(f ), left-iterate(f ) R∗

Repetition combine(f , g)
New!Chained sum chain(f ,R),

left-chain(f ,R)
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Future Work

I Implement practical programmer assistance tools
I Static: Precondition computatation, equivalence checking
I Runtime: Debugging aids

I Theory of regular functions
I Automatically learn transformations from teachers (L*), from

input / output examples, etc.
I Trees to trees / strings (Processing hierarchical data, XML

documents, etc.)
I ω-strings to strings

I Non-regular extensions
I “Count number of a-s in a string”
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Thank you! Questions?

drexonline.com
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What About Unrestricted DReX Expressions?
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Evaluating Unrestricted DReX Expressions is Hard
Or, why the typing rules are essential

I With function composition, it is PSPACE-complete
I combine(f , g) is defined iff both f and g are defined

Flavour of regular expression intersection
The best algorithms for this are either

I Non-elementary in regex size, or
I Cubic in length of input string
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