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data streams web-page requests

∙ What is the maximum number of daily requests for P2?

iter-max(day-countP2)

∙ What is the number of requests for P1 in an average month?

iter-avg(month-countP1)

∙ What is the total number of requests for P1?

countP1 = iter-sum(day-countP1)

∙ What is the maximum of the total number of requests for P1
and P2?

max(countP1, countP2)
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quantitative regular expressions

Languages Σ∗ → bool ≡ Regular expressions
Cost functions Σ∗ → R ≡ QREs
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function combinators



function combinators basic expressions, a 7→ d

a 7→ d

∙ If w = a, then output d, otherwise undefined
∙ P1 7→ 0, P1 7→ 1, EOD 7→ 5, …
∙ Analogue of basic regular expressions
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function combinators f else g

f else g

∙ If f(w) is defined, then output f(w), otherwise output g(w)
∙ Analogue of regular expression union
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function combinators op

∙ f+ g: Map w to f(w) + g(w)
∙ f− g: Map w to f(w)− g(w)
∙ max(f,g): Map w to max(f(w),g(w))
∙ · · ·
∙ op(f1, f2, . . . , fk) : Map w to op(f1(w), f2(w), . . . , fk(w))
∙ Analogue of regular expression intersection
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concatenation split-op(f, g)

split-plus(f,g) , split-max(f,g) , …, split-op(f,g)

w1 w2

f g Output

+ max · · · op
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concatenation split-op(f, g)

split-plus(f,g)

, split-max(f,g) , …, split-op(f,g)

w1 w2
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+
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iteration iter-op(f)

w1 w2 wk−1 wk

op
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function combinators attempt 1

Basic functions: a 7→ d
Conditional choice: f else g
Concatenation: split-op(f,g)
Function iteration: iter-op(f)
Cost operations: op(f1, f2, . . . , fk)

∙ What about non-binary, non-commutative or
non-associative operators?

∙ Are these operators “sufficient”? If we add more operators?
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parse trees and computation trees

split-plus(countP1,Σ5 7→ 0)

Σ5

· · ·

∙ Attempt 1 annotates the parse tree with cost operations to
obtain the computation tree

∙ What if QREs map input streams to computation trees?
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quantitative regular expressions

Key Insight

QREs map input streams to terms over the cost domain

∙ Terms contain parameters
∙ f(aaab) = 5 + p, where p is a parameter

∙ Parameter substitution is also an operation
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function combinators substitution

Parameter subtitution, f[p/g]

∙ Say f(w) = tf,
∙ and g(w) = tg
∙ f[p/g](w) = tf[p/tg]
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function combinators concatenation, take 2

split(f→p g)

w1 w2

f g Output

14



function combinators concatenation, take 2

split(f→p g)

w1 w2

f g Output
p
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function combinators concatenation, take 2

Simulating split-plus(f,g)

w1 w2

f g′ Output
p

∙ split-plus(f,g) = split(f→p g′)

∙ g′(w) = p+ g(w)
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function combinators iteration, take 2

w1 w2 wk−1 wk

op

f f f f
p p p
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function combinators iteration, take 2
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quantitative regular expressions

Basic functions: a 7→ d, regex 7→ term
Conditional choice: f else g
Concatenation: split(f→p g), split(f←p g)
Function iteration: iter→(f), iter←(f)
Cost operations: op(f1, f2, . . . , fk), f[p/g]

∙ QREs map string to terms
∙ Structural operators decoupled from cost operators
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quantitative regular expressions

∙ Was our choice of combinators ad-hoc? What functions can
the formalism express?

∙ Given f and an input stream w, can we efficiently compute
f(w)?
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regular cost functions [lics 2013]

Languages Σ∗ → bool ≡ Finite automata
Cost functions Σ∗ → R ≡ ?

Regular languages have many appealing properties: many
natural equi-expressive characterizations, robust closure
properties, decidable analysis problems, practical utility
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cost register automata [lics 2013]

q0start q1

d ≥ 0/bal := bal + d

d = endm/bal := bal + 10

d < 0/bal := bal + d d ∈ R/bal := bal + d

d = endm

∙ Finite state space, finitely many registers
∙ Registers hold terms: Parameterized by set of operations
∙ Equivalent to MSO definable string-to-term transducers
∙ Closed under regular lookahead, input reversal, etc
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cost register automata

Theorem

QREs can express exactly the same functions as CRAs
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cras→ qres

Taste of the completeness proof

∙ Piggy-back on DFA to regular expression translation
Construct Ri(q,q′): all strings from q to q′ while only
traversing states less than qi

∙ Construct fi(q,q′, x): express final value of register x as a
DReX expression

23



cras→ qres

Taste of the completeness proof

∙ Capture data flows using “shapes”
∙ Construct a partial order over shapes, and use as basis for
induction

x

y

z

x

y

z
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fast evaluation algorithms



evaluation algorithms

Given a QRE f and an input stream w, find f(w)

∙ QREs separate intent from evaluation
∙ If QREs are unambiguous, then f(w) can be computed with a
single pass over w in time O(|w| · poly(|f|))
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evaluation algorithms

split-plus(countP1,Σ5 7→ 0)

Σ5

Σ5

5 potential parse trees needed at each step

∙ Idea 1: Statically bound number of potential parse trees:
O(poly(|f|)), irrespective of |w|
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evaluation algorithms
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∙ Term compression ensures intermediate terms of bounded
size

∙ Idea 2: If only operators are ∗, +, −, min, max, avg, then
space usage is polynomially bounded too!
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conclusion

∙ Introduced Quantitative Regular Expressions (QRE)
∙ Idea of function combinators
∙ Function descriptions are modular
∙ Regular parsing of the input data stream

∙ Simple, expressive programming model for stream
processing, with strong theoretical foundations and fast
evaluation algorithms
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quantitative regular expressions

Languages Σ∗ → bool ≡ Regular expressions
Cost functions Σ∗ → R ≡ QREs

∙ Also works for Σ∗ → N, Σ∗ → Q, …
∙ Σ∗ → D, for arbitrary cost domain D

∙ Key insight: Generalizing to string-to-term transformations
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conclusion

∙ Expressively equivalent to regular cost functions / cost
register automata

∙ Fast one-pass evaluation algorithms for unambiguous
expressions

∙ Low space usage if only operations used are ∗, +, −, min,
max, avg
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conclusion future work

∙ Approximate evaluation algorithms for certain operations
such as iter-median (Jointly with Sanjeev Khanna and Kostas
Mamouras)

∙ Exploring connections to streaming databases
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fin!
questions, comments, brickbats?
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