REGULAR PROGRAMMING FOR QUANTITATIVE PROPERTIES OF DATA STREAMS

Rajeev Alur Dana Fisman Mukund Raghothaman ESOP 2016

University of Pennsylvania

· P2	· P2	· EOM	· P2
· EOD	· P1	· P2	· EOD
· P2	· EOD	· P2	· P2
· P1	· P2	· P2	· P2
· P1	· P2	· P1	· P2
· EOM	· P1	· P2	· EON
· P2	· P2	· EOM	· P1
· P2	· P1	· P1	·

 \cdot What is the maximum number of daily requests for P2?

*iter-max(day-count*_{P2})

• What is the maximum number of daily requests for P2?

*iter-max(day-count*_{P2})

 $\cdot\,$ What is the number of requests for P1 in an average month?

iter-avg(*month-count*_{P1})

• What is the maximum number of daily requests for P2?

*iter-max(day-count*_{P2})

 $\cdot\,$ What is the number of requests for P1 in an average month?

*iter-avg(month-count*_{P1})

• What is the total number of requests for P1?

 $count_{P1} = iter-sum(day-count_{P1})$

• What is the maximum number of daily requests for P2?

*iter-max(day-count*_{P2})

 $\cdot\,$ What is the number of requests for P1 in an average month?

iter-avg(month-count_{P1})

• What is the total number of requests for P1?

 $count_{P1} = iter-sum(day-count_{P1})$

• What is the maximum of the total number of requests for P1 and P2?

 $max(count_{P1}, count_{P2})$

Languages $\Sigma^* \to \text{bool} \equiv \text{Regular expressions}$ Cost functions $\Sigma^* \to \mathbb{R} \equiv \text{QREs}$

FUNCTION COMBINATORS

$a \mapsto d$

- · If w = a, then output d, otherwise undefined
- $\cdot \ \mbox{P1} \mapsto 0 \mbox{, P1} \mapsto 1 \mbox{, EOD} \mapsto 5 \mbox{, ...}$
- · Analogue of basic regular expressions

f else g

- · If f(w) is defined, then output f(w), otherwise output g(w)
- \cdot Analogue of regular expression union

- f + g: Map w to f(w) + g(w)
- f g: Map w to f(w) g(w)
- $\max(f,g)$: Map w to $\max(f(w),g(w))$
- • •
- $\cdot op(f_1, f_2, \dots, f_k)$: Map w to $op(f_1(w), f_2(w), \dots, f_k(w))$
- \cdot Analogue of regular expression intersection

split-op(f,g)

split-plus(f, g)

split-op(f,g)

split-plus(f,g), split-max(f,g)

split-op(f, g)

split-plus(f,g), split-max(f,g), ..., split-op(f,g)

ATTEMPT 1

Basic functions: $a \mapsto d$ Conditional choice: f else gConcatenation: split-op(f,g)Function iteration: iter-op(f)Cost operations: $op(f_1, f_2, \dots, f_k)$ Basic functions: $a \mapsto d$ Conditional choice: f else gConcatenation: split-op(f,g)Function iteration: iter-op(f)Cost operations: $op(f_1, f_2, ..., f_k)$

• What about non-binary, non-commutative or non-associative operators?

Basic functions: $a \mapsto d$ Conditional choice: f else gConcatenation: split-op(f,g)Function iteration: iter-op(f)Cost operations: $op(f_1, f_2, ..., f_k)$

- What about non-binary, non-commutative or non-associative operators?
- \cdot Are these operators "sufficient"? If we add more operators?

$$|-----]$$

• Attempt 1 annotates the parse tree with cost operations to obtain the computation tree

- Attempt 1 annotates the parse tree with cost operations to obtain the computation tree
- · What if QREs map input streams to computation trees?

Key Insight

QREs map input streams to terms over the cost domain

- · Terms contain parameters
- f(aaab) = 5 + p, where p is a parameter

Key Insight

QREs map input streams to terms over the cost domain

- · Terms contain parameters
- f(aaab) = 5 + p, where p is a parameter
- · Parameter substitution is also an operation

Parameter subtitution, f[p/g]

- Say $f(w) = t_f$,
- · and $g(w) = t_g$
- $\cdot f[p/g](w) = t_f[p/t_g]$

Output

 $split(f \rightarrow^p g)$

 $split(f \rightarrow^p g)$

Simulating *split-plus*(*f*, *g*)

· split-plus(f, g) = split($f \rightarrow^{p} g'$)

Simulating *split-plus*(*f*, *g*)

- · split-plus(f, g) = split($f \rightarrow^{p} g'$)
- $\cdot g'(w) = p + g(w)$

Basic functions: $a \mapsto d$, regex \mapsto term Conditional choice: f else gConcatenation: $split(f \rightarrow^p g)$, $split(f \leftarrow^p g)$ Function iteration: $iter \rightarrow(f)$, $iter \leftarrow(f)$ Cost operations: $op(f_1, f_2, \dots, f_k)$, f[p/g] Basic functions: $a \mapsto d$, $regex \mapsto term$ Conditional choice: f else gConcatenation: $split(f \rightarrow^p g)$, $split(f \leftarrow^p g)$ Function iteration: $iter \rightarrow(f)$, $iter \leftarrow(f)$ Cost operations: $op(f_1, f_2, \dots, f_k)$, f[p/g]

- · QREs map string to terms
- $\cdot\,$ Structural operators decoupled from cost operators

- Was our choice of combinators ad-hoc? What functions can the formalism express?
- Given f and an input stream w, can we efficiently compute f(w)?

EXPRESSIVENESS

Languages $\Sigma^* \to \text{bool} \equiv \text{Finite automata}$ Cost functions $\Sigma^* \to \mathbb{R} \equiv ?$

Regular languages have many appealing properties: many natural equi-expressive characterizations, robust closure properties, decidable analysis problems, practical utility

COST REGISTER AUTOMATA [LICS 2013]

- · Finite state space, finitely many registers
- · Registers hold terms: Parameterized by set of operations
- · Equivalent to MSO definable string-to-term transducers
- · Closed under regular lookahead, input reversal, etc

Theorem

QREs can express exactly the same functions as CRAs

Taste of the completeness proof

- Piggy-back on DFA to regular expression translation Construct $R^i(q,q')$: all strings from q to q' while only traversing states less than q_i
- Construct $f^{i}(q, q', x)$: express final value of register x as a DReX expression

Taste of the completeness proof

- · Capture data flows using "shapes"
- Construct a partial order over shapes, and use as basis for induction

FAST EVALUATION ALGORITHMS

Given a QRE f and an input stream w, find f(w)

- $\cdot\,$ QREs separate intent from evaluation
- If QREs are unambiguous, then f(w) can be computed with a single pass over w in time O(|w| · poly(|f|))

5 potential parse trees needed at each step

5 potential parse trees needed at each step

Idea 1: Statically bound number of potential parse trees:
O(poly(|f|)), irrespective of |w|

- Term compression ensures intermediate terms of bounded size
- Idea 2: If only operators are *, +, -, min, max, *avg*, then space usage is polynomially bounded too!

CONCLUSION

- · Introduced Quantitative Regular Expressions (QRE)
- · Idea of function combinators
 - · Function descriptions are modular
 - $\cdot\,$ Regular parsing of the input data stream
- Simple, expressive programming model for stream processing, with strong theoretical foundations and fast evaluation algorithms

Languages $\Sigma^* \to \text{bool} \equiv \text{Regular expressions}$ Cost functions $\Sigma^* \to \mathbb{R} \equiv \text{QREs}$

- $\cdot \:$ Also works for $\Sigma^* \to \mathbb{N}$, $\Sigma^* \to \mathbb{Q}$, ...
- $\cdot \ \Sigma^* \to \mathbb{D}$, for arbitrary cost domain \mathbb{D}
- · Key insight: Generalizing to string-to-term transformations

- Expressively equivalent to regular cost functions / cost register automata
- Fast one-pass evaluation algorithms for unambiguous expressions
- Low space usage if only operations used are *, +, -, min, max, avg

- Approximate evaluation algorithms for certain operations such as *iter-median* (Jointly with Sanjeev Khanna and Kostas Mamouras)
- $\cdot\,$ Exploring connections to streaming databases

FIN!

QUESTIONS, COMMENTS, BRICKBATS?