REGULAR PROGRAMMING FOR QUANTITATIVE
PROPERTIES OF DATA STREAMS

Rajeev Alur Dana Fisman Mukund Raghothaman
ESOP 2016

University of Pennsylvania

DATA STREAMS WEB-PAGE REQUESTS

- P2 - P2 - EOM - P2
- EOD - P1 - P2 - EOD
- P2 - EOD - P2 - P2
- P1 - P2 - P2 - P2
- P1 > [P2 - P1 - P2
- EOM - P1 - P2 - EOM
- P2 - P2 - EOM - P1

- P2 - P1 - P1

DATA STREAMS WEB-PAGE REQUESTS

- What is the maximum number of daily requests for P2?

iter-max(day-countp,)

DATA STREAMS WEB-PAGE REQUESTS

- What is the maximum number of daily requests for P2?
iter-max(day-countp,)
- What is the number of requests for P1in an average month?

iter-avg(month-countpq)

DATA STREAMS WEB-PAGE REQUESTS

- What is the maximum number of daily requests for P2?
iter-max(day-countp,)
- What is the number of requests for P1in an average month?
iter-avg(month-countp)
- What is the total number of requests for P1?

countpy = iter-sum(day-countp;)

DATA STREAMS WEB-PAGE REQUESTS

- What is the maximum number of daily requests for P2?
iter-max(day-countp,)
- What is the number of requests for P1in an average month?
iter-avg(month-countp)
- What is the total number of requests for P1?
countpy = iter-sum(day-countp;)

- What is the maximum of the total number of requests for P1
and P2?
max(countp, countp;)

QUANTITATIVE REGULAR EXPRESSIONS

Languages X* — bool = Regular expressions
Cost functions ¥* - R = QREs

FUNCTION COMBINATORS

FUNCTION COMBINATORS BASIC EXPRESSIONS, a — d

ar—d

- If w = a, then output d, otherwise undefined
- P1—0,P1—1 EOD 35, ..

- Analogue of basic regular expressions

FUNCTION COMBINATORS

felseg

- If f(w) is defined, then output f(w), otherwise output g(w)
- Analogue of regular expression union

FUNCTION COMBINATORS

- f+g: Map wto f(w) + g(w)
- f—9g: Map wto f(w) — g(w)
- max(f,g): Map w to max(f(w), g(w))

- op(fi, fa, - ., fr) : Map wto op(fi(w), fa(w), ..., fr(W))

- Analogue of regular expression intersection

CONCATENATION split-op(f, g)

f g Output

CONCATENATION split-op(f, g)

split-plus(f, g)

|
C 1

f g Output

CONCATENATION

split-plus(f, g) , split-max(f, g)

|
1

W1

max

Output

split-op(f, g)

CONCATENATION split-op(f, g)

split-plus(f, g) , split-max(f, g) , .., split-op(f, g)

|
C 1 J

Wq Wo
f g Output
+ max e op

iter-op(f)
iter-o
N
ATIO
ITER

op

FUNCTION COMBINATORS ATTEMPT 1

Basic functions: a+d
Conditional choice: felseg
Concatenation: split-op(f, g)
Function iteration: iter-op(f)

Cost operations: op(fi,fa,.--,fr)

FUNCTION COMBINATORS ATTEMPT 1

Basic functions: a+d
Conditional choice: felseg
Concatenation: split-op(f, g)
Function iteration: iter-op(f)

Cost operations: op(fi,fa,.--,fr)

- What about non-binary, non-commutative or
non-associative operators?

FUNCTION COMBINATORS ATTEMPT 1

Basic functions: a+d
Conditional choice: felseg
Concatenation: split-op(f, g)
Function iteration: iter-op(f)

Cost operations: op(fi,fa,.--,fr)

- What about non-binary, non-commutative or
non-associative operators?

- Are these operators “sufficient”? If we add more operators?

PARSE TREES AND COMPUTATION TREES

split-plus(countpq, X5 +— 0)

PARSE TREES AND COMPUTATION TREES

split-plus(countpq, X5 +— 0)

PARSE TREES AND COMPUTATION TREES

split-plus(countpq, X° = 0)

* PO

P1 P2 P2 ... P

PARSE TREES AND COMPUTATION TREES

split-plus(countpq, X5 +— 0)

|
I S /\
25 + 0

1T0 0 --- 1

- Attempt 1 annotates the parse tree with cost operations to
obtain the computation tree

PARSE TREES AND COMPUTATION TREES

split-plus(countpq, X5 +— 0)

|
I S /\
25 + 0

1T0 0 --- 1

- Attempt 1 annotates the parse tree with cost operations to
obtain the computation tree

- What if QREs map input streams to computation trees?

QUANTITATIVE REGULAR EXPRESSIONS

Key Insight

QREs map input streams to terms over the cost domain

- Terms contain parameters

- f(aaab) =5+ p, where p is a parameter

QUANTITATIVE REGULAR EXPRESSIONS

Key Insight
QREs map input streams to terms over the cost domain
- Terms contain parameters

- f(aaab) =5+ p, where p is a parameter

- Parameter substitution is also an operation

FUNCTION COMBINATORS SUBSTITUTION

Parameter subtitution, f[p/g|

- Say f(w) = tf,
~and g(w) =

- flp/gl(w) = tf[/]

13

FUNCTION COMBINATORS CONCATENATION, TAKE 2

split(f =P g)

W1 W2

f g Output

14

FUNCTION COMBINATORS CONCATENATION, TAKE 2

split(f =P g)

W1 W2

f g Output

14

FUNCTION COMBINATORS CONCATENATION, TAKE 2

Simulating split-plus(f, g)

|
C 1 J

Wy Wo
f 2 g Output

split-plus(f, g) = split(f =P g’)

15

FUNCTION COMBINATORS CONCATENATION, TAKE 2

Simulating split-plus(f, g)

|
C 1 J

Wy Wo
f 2 g Output

split-plus(f, g) = split(f =P g’)
- g'(w) =p+g(w)

15

FUNCTION COMBINATORS ITERATION, TAKE 2

op

16

FUNCTION COMBINATORS ITERATION, TAKE 2

16

QUANTITATIVE REGULAR EXPRESSIONS

Basic functions: aw— d, regex+— term
Conditional choice: felseg
Concatenation: split(f —P g), split(f <P g)
Function iteration: iter "(f), iter” (f)

Cost operations: op(fi,fa,...,fr), flP/9]

17

QUANTITATIVE REGULAR EXPRESSIONS

Basic functions: aw~ d, regex term
Conditional choice: felseg
Concatenation: split(f —P g), split(f <P g)
Function iteration: iter " (f), iter™ (f)

Cost operations: op(fi,fa,...,fr), flP/9]

- QREs map string to terms
- Structural operators decoupled from cost operators

17

QUANTITATIVE REGULAR EXPRESSIONS

- Was our choice of combinators ad-hoc? What functions can
the formalism express?
- Given fand an input stream w, can we efficiently compute

flw)?

EXPRESSIVENESS

REGULAR COST FUNCTIONS [LIcS 2013]

Languages X* — bool = Finite automata
Cost functions ¥* - R =

Regular languages have many appealing properties: many
natural equi-expressive characterizations, robust closure
properties, decidable analysis problems, practical utility

20

COST REGISTER AUTOMATA [LICS 2013]

d > 0/bal == bal + d d < 0/bal := bal + d d € R/bal = bal +d

start @ @

d = endm /bal := bal + 10 d = endm

- Finite state space, finitely many registers
- Registers hold terms: Parameterized by set of operations
- Equivalent to MSO definable string-to-term transducers

- Closed under regular lookahead, input reversal, etc

COST REGISTER AUTOMATA

Theorem

QREs can express exactly the same functions as CRAs

22

CRAS — QRES

Taste of the completeness proof

- Piggy-back on DFA to regular expression translation
Construct R'(g, g’): all strings from g to g’ while only
traversing states less than g;

- Construct f((g, ¢’, x): express final value of register x as a
DReX expression

23

CRAS — QRES

Taste of the completeness proof

- Capture data flows using “shapes”

- Construct a partial order over shapes, and use as basis for
induction

24

FAST EVALUATION ALGORITHMS

EVALUATION ALGORITHMS

Given a QRE fand an input stream w, find f(w)

- QREs separate intent from evaluation

- If QREs are unambiguous, then f(w) can be computed with a
single pass over w in time O(|w| - poly(|f]))

26

EVALUATION ALGORITHMS

split-plus(countpq, 5 — 0)

27

EVALUATION ALGORITHMS

split-plus(countpq, 5 — 0)

‘ ,,,,,,,,,,

27

EVALUATION ALGORITHMS

split-plus(countpq, 5 — 0)
| — oo {---

27

EVALUATION ALGORITHMS

split-plus(countpq, 5 — 0)
| — oo {---

5 potential parse trees needed at each step

27

EVALUATION ALGORITHMS

split-plus(countpq, 5 — 0)
| — oo 4---

5 potential parse trees needed at each step

- Idea 1: Statically bound number of potential parse trees:
O(poly(|f])), irrespective of |w|

27

EVALUATION ALGORITHMS

l’

min 3

5
A

X 2

28

)
=
T
E
o
(@)
G
-
<
2
=
=
<
=)
<
>
Ll

28

)
=
T
E
o
(@)
G
-
<
2
=
=
<
=)
<
>
Ll

28

EVALUATION ALGORITHMS

/\ /\ min

>

- Term compression ensures intermediate terms of bounded
size

- Idea 2: If only operators are *, +, —, min, max, avg, then
space usage is polynomially bounded too!

28

CONCLUSION

CONCLUSION

- Introduced Quantitative Regular Expressions (QRE)
- ldea of
- Function descriptions are modular
- Regular parsing of the input data stream
programming model for stream
processing, with strong theoretical foundations and fast
evaluation algorithms

30

QUANTITATIVE REGULAR EXPRESSIONS

Languages X* — bool = Regular expressions
Cost functions ¥* - R = QREs

- Also works for ¥* - N, ¥* — Q, ...

- ¥* — D, for arbitrary cost domain D

- Key insight: Generalizing to string-to-term transformations

31

CONCLUSION

- Expressively equivalent to regular cost functions / cost
register automata

- Fast one-pass evaluation algorithms for unambiguous
expressions

- Low space usage if only operations used are %, +, —, min,
max, avg

32

CONCLUSION FUTURE WORK

- Approximate evaluation algorithms for certain operations

such as iter-median (Jointly with Sanjeev Khanna and Kostas
Mamouras)

- Exploring connections to streaming databases

33

FIN!

QUESTIONS, COMMENTS, BRICKBATS?

	Introduction
	Function Combinators
	Expressiveness
	Fast Evaluation Algorithms
	Conclusion

