
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Towards Elastic Incrementalization for Datalog
David Zhao

University of Sydney

dzha3983@uni.sydney.edu.au

Mukund Raghothaman

University of Southern California

raghotha@usc.edu

Pavle Subotić

Microsoft

pavlesubotic@microsoft.com

Bernhard Scholz

University of Sydney

bernhard.scholz@sydney.edu.au

ABSTRACT
Various incremental evaluation strategies for Datalog have been

developedwhich reuse computations for small input changes. These

methods assume that incrementalization is always a better strategy

than re-computation. However, in real-world applications such

as static program analysis, re-computation can be cheaper than

incrementalization for large updates.

This work introduces a novel elastic incremental approach that

has two different strategies that can be selectively applied. We call

the first strategy a Bootstrap strategy that recomputes the entire

result for high-impact changes, and the second is an Update strategy
that performs an incremental update for low-impact changes. Our

approach allows for a lightweight Bootstrap strategy that is suitable

for high-impact changes, with the trade-off that Update may require

more work for small changes. We demonstrate our approach on real

world applications and compare our elastic incremental approach

to existing methods.

ACM Reference Format:
David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz.

2018. Towards Elastic Incrementalization for Datalog. InWoodstock ’18: ACM
Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY .ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Logic languages such as Datalog have seen wide-spread adoption

in recent years in areas such as static program analysis [2, 6, 9, 11],

declarative networking [4, 17, 42], security analysis [29], busi-

ness applications [3] and machine learning [24]. The main reasons

for the wide-spread adoption have been the availability of high-

performance logic engines [3, 14, 19] and the ease of expressing

programs declaratively, i.e., computations can be expressed suc-

cinctly, providing means for rapid prototyping of scientific and

industrial applications.

The standard evaluation strategy for Datalog programs is to find

the resulting output when given a set of facts and logical rules. The

facts are the input to the logical computation defined by the rules,

and the output is the logical result of the computation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

However, it has been observed [23, 27] that many real-world

applications re-compute most of their results with slight variations

of their input. Hence, several state-of-the-art Datalog engines have

proposed incremental evaluation techniques [21, 23, 26] to facilitate

streaming, i.e., the evaluation uses the previous result with a given

change in its input.

Successful applications of incremental Datalog have operated

on several assumptions: (1) that the impact, i.e., number of overall

tuple changes, is proportional to the update size, and (2) that the

use case exhibits a continuous stream of small impact updates.

Indeed for several use cases [27] these assumptions tend to hold.

However, for other notable use cases such as program analysis in a

continuous integration/continuous delivery (CI/CD) setup [7, 8, 38]

these assumptions do not hold.

Static analyses written in Datalog can consist of hundreds or

thousands of highly recursive rules and relations [6, 10]. Due to the

complexity of the ruleset, one can no longer assume that update

size is proportional to impact size. For example, in our experimental

evaluation on the Doop program analysis framework, we found

large variability in the impact of updates. This can be explained by

the connectivity of points-to analyses, where even small changes

in the input may substantially change pointer sets of variables.

Moreover, when static analyzers are deployed in CI/CD pipelines

there is no guarantee that updates will be structurally small. For

instance, when the code base is updated, the initial change is often

a refactor or a new feature implementation. Such code changes

typically result in large changes to the input of an analysis. These

changes may then be followed by smaller changes as a result of

minor review suggestions, but as we show, even these smaller input

changes cannot ensure small impacts. Thus, we argue the success

of incremental evaluation techniques on such use cases requires

minimizing the overhead of evaluating large impact updates.

Consider Fig. 1a that illustrates a generic incremental computa-

tion setup. Given a Datalog program 𝑃 and two inputs 𝐸1 and 𝐸2,

also known as Extensional Database (EDB). A standard batch-mode
evaluation runs the program 𝑃 with 𝐸1 and 𝐸2 independently, to

produce the results 𝐼1 and 𝐼2, also known as Intensional Database

(IDB). However, assume that only a small portion of the input (de-

noted by Δ𝐸) and output (denoted by Δ𝐼) changes in 𝐸2 and 𝐼2.

In such a scenario, we assume that many computations for pro-

ducing 𝐼2 are repeated. An incremental evaluation Δ𝑃 can recycle

computations from a previous evaluation. The functional block of

an incremental evaluation [21, 23, 26] is illustrated in Fig. 1b. A

Computational State 𝜎1 encodes the previous computations for 𝐼1
in a special format so that the computations can be reused. With

state 𝜎1 and the change in input Δ𝐸, the incremental evaluation

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Woodstock ’18, June 03–05, 2018, Woodstock, NY David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

𝐸1 𝑃 𝐼1

𝐸2 𝑃 𝐼2

Δ𝐸 Δ𝐼

(a) Batch-mode

𝜎1 Δ𝑃 𝜎2

Δ𝐸

𝐼2

(b) Incremental

∅

𝐸1

Δ𝑃

Δ𝐸2

𝐼1

Δ𝑃

Δ𝐸3

𝐼2

Δ𝑃 . . .

𝐼3

𝜎1 𝜎2

(c) Stream Processing with Incremental

Figure 1: Batch-mode vs. Incrementalized Evaluation

produces the output 𝐼2 and the new computational state 𝜎2. The

streaming setup of incremental evaluation is shown in Fig. 1c. A

series of updates to the EDB is provided over time via Δ𝐸𝑖 . We call

one stage in the stream an epoch. For the first epoch, we use the
empty state as computational state and 𝐸1 as Δ𝐸1 to produce 𝐼1 and
the state 𝜎1. Any subsequent change Δ𝐸𝑖 in the EDB is processed

by using the previous computational state 𝜎𝑖−1 to generate 𝐼𝑖 .

State-of-the art incremental evaluation frameworks [23, 25, 26]

use a comprehensive computational state so that small updates can

be performed efficiently. Because of their comprehensive compu-

tational state, initiating a stream with current frameworks can be

prohibitively slow and cannot be used to react to large updates. For

example, when a static program analysis seeks to reuse previous

computations for a large code refactoring, significant portions of

the control flow graph may have been replaced. In such a use case,

an incremental evaluation will essentially perform two computa-

tions, one to delete the old control flow graph, and one to compute

the new control flow graph with additional overheads caused by

the incrementalization. Therefore, these heavyweight updates are

better served by an evaluation strategy that is closer to standard

batch-mode evaluation augmented with state for the future updates

to be performed incrementally.

In this work, we propose an elastic incremental evaluation scheme

called Bootstrap-Update. Our approach has two distinct strategies to

evaluate an update: a specialized Bootstrap denoted as 𝑃𝑏 (Fig. 2a),

and Update denoted as 𝑃𝑢 (Fig. 2b). The specialized Bootstrap resem-

bles an augmented batch-mode evaluation that produces the com-

putational state from scratch to allow subsequent updates, whereas

Update is an incremental evaluation strategy.

Our approach proposes a novel sparse encoding that maintains a

lightweight state 𝜎 . Our state exhibits a worst-case space complexity

of O(|𝐼 |) (i.e. linear in the size of the output) whereas existing

incremental encodings [23, 26], have a worst-case space complexity

of O(𝑚 |𝐼 |) where𝑚 is the number of fixpoint iterations in the semi-

naive evaluation algorithm [1]. Our lightweight state allows for

an accelerated Bootstrap algorithm that can handle high-impact

updates by efficiently recomputing the state from scratch, with

the trade-off that the Update strategy may require more work for

smaller updates. Furthermore, we provide a simple heuristic for

𝑃𝑏

𝜎𝑘

𝐸𝑘

𝐼𝑘

(a) Bootstrap Strategy

𝜎𝑘−1

𝑃𝑢

𝜎𝑘

Δ𝐸𝑘 𝐼𝑘

(b) Update Strategy

∅

𝐸1

𝑃𝑏

Δ𝐸2

𝐼1

𝑃𝑢

Δ𝐸3

𝐼2

𝑃𝑢

𝐼3

𝐸4

𝑃𝑏

Δ𝐸5

𝐼4

𝑃𝑢 . . .

𝐼5

(c) Elastic Streaming

Figure 2: Elastic Incremental Evaluation

choosing the appropriate strategy: we rerun the bootstrap when

the incremental update takes more than a fraction (as a switching
parameter) of the last bootstrap’s runtime. This switching parameter

typically depends on the behavior of each individual application,

and how large a typical update is for that application. Our solution

operates under the insight that if we have comparable performance

with batch mode Datalog evaluation on large impact updates and

a small slow down on low impact updates we will have an overall

net gain by selective application of incremental evaluation.

We have integrated our elastic Bootstrap-Update incremental

evaluation in the open source high performance Datalog compiler

Soufflé [20]. We have performed an extensive evaluation on a num-

ber of use cases which show the utility of our approach when

compared to existing techniques on both large and small updates.

We also provide a discussion of the practical considerations for

building incremental evaluation in Soufflé that include relational

data structures, parallelization and scheduling strategies.

In summary, we make the following contributions in this paper:

(1) We present a new problem - that incremental evaluation

should be elastic, i.e., it should be sensitive towards the im-

pact of an update.

(2) We present a novel incremental evaluation, using a sparse

proof counting encoding, exhibiting superior performance

and lower memory overhead for elastic use cases.

(3) We extend Soufflé, an open-source Datalog evaluation engine

for elastic incremental evaluation and propose several engine

optimizations for superior performance.

(4) We provide an extensive experimental evaluation validating

the utility of our contribution.

2 BACKGROUND
In this section, we provide an example to explain the background

of Datalog evaluation.

2.1 Example: Datalog Pointer Analysis
We present an example Datalog program analysis that computes

the pairs of variables that may alias in a source program.

Figure 3a shows an fragment of object-oriented source code,

which is encoded in the form of relations in Figure 3b, and repre-

sented diagrammatically in Figure 4. From this encoded relational

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards Elastic Incrementalization for Datalog Woodstock ’18, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

L1: a = new O();
L2: b = a;

L3: c = new P();
L4: d = new P();

L5: c.f = a;
L6: e = d.f;
L7: b = c.f;
L8: a = b;

(a) Input Program

new(a, L1).
assign(b, a).

new(c, L3).
new(d, L4).

store(c, f, a).
load(e, d, f).
load(b, c, f).
assign(a, b).

(b) EDB Tuples

vpt(Var, Obj) :- new(Var, Obj). //r1
vpt(Var, Obj) :- assign(Var, Var2),

vpt(Var2, Obj). //r2
vpt(Var, Obj) :- load(Var, Y, F),

store(P, F, Q),
vpt(Q, Obj),
vpt(P, Obj2),
vpt(Y, Obj2). //r3

alias(Var1, Var2) :- vpt(Var1, Obj),
vpt(Var2, Obj). //r4

(c) Datalog Pointer Analysis

Figure 3: Program Analysis Datalog Setup

𝑎

𝑏

𝑐

𝑒

𝑑

𝐿1 𝐿3 𝐿4

𝑛
𝑒𝑤

𝑎
𝑠𝑠
𝑖𝑔
𝑛

𝑎
𝑠𝑠𝑖𝑔

𝑛

𝑙𝑜
𝑎𝑑
[𝑓]

𝑠𝑡𝑜𝑟𝑒 [𝑓]

𝑛
𝑒𝑤

𝑛
𝑒𝑤

𝑙𝑜
𝑎
𝑑
[𝑓
]

Figure 4: Pointer Input Diagram

representation of the source program, a (field sensitive but flow-

insensitive [37]) pointer analysis is written in Datalog, in Figure 3c.

In this analysis, the input relations (also known as extensional data-

base, or EDB) are new, assign, load, and store, each of which

represent a certain type of operation in the source program. During

the analysis, the Datalog specification computes output relations

(also known as intensional database, or IDB) vpt, which relates vari-
ables and the objects that they point to, and alias, which relates

pairs of variables which may point to the same object.

This logic specification consists of four rules (here labelled r1
through r4). Each rule is a Horn clause consisting of two parts: the

predicate on the left of the implication sign (:-) is the head, and the
set of predicates on the right is the body. Each predicate consists

of a relation name and a sequence of constants and variables of

appropriate arity. For example, the rule

vpt(Var,Obj) :- assign(Var,Var2), vpt(Var2,Obj).

has the predicate vpt(Var,Obj) as the head, and the two predicates
assign(Var,Var2) and vpt(Var2,Obj) as the body. Negation and
constraints are omitted for now, but are discussed in more detail in

Section 3.3.

A predicatemay be instantiated, where all its variables aremapped

to constants to form a tuple. An instantiated rule is a rule where

each predicate is instantiated, such that the variable mappings

are compatible between all the predicates. A Datalog rule is read

from right to left as a universally quantified implication: “for all

rule instantiations, if every tuple in the body is derivable, then the

corresponding tuple for the head is also derivable”.

2.2 Semi-Naïve Evaluation
To evaluate a Datalog specification, modern engines use a bottom-
up approach, which begins from the input tuples, and in each step

attempts to derive more tuples using an immediate consequence
operator Γ𝑃 (𝐼) = 𝐼 ∪ {𝑡 | 𝑟 = 𝑡 :- 𝑡1, . . . , 𝑡𝑛, each 𝑡𝑖 ∈ 𝐼 } such that 𝑟

is a valid instantiation of a rule in 𝑃 with each 𝑡𝑖 ∈ 𝐼 . The evaluation
ends when a fixed-point is reached. Many Datalog solvers improve

on this bottom-up strategy by utilizing semi-naïve evaluation. Semi-

naïve evaluation proposes twomain optimizations: (1) Stratification:

the Datalog specification is split into strata. Firstly, a precedence
graph of relations is computed, where for relations 𝑅

body
and 𝑅

head
,

there is an edge from 𝑅
body

to 𝑅
head

if 𝑅
body

appears in the body

of a rule with 𝑅
head

in the head. Then, each strongly connected

component of the precedence graph forms a stratum. Each stratum

is evaluated in a bottom-up fashion as a separate fixpoint compu-

tation in order based on the topological order of SCCs. The input

to a particular stratum is the relations in the previous strata in

the precedence graph. (2) New knowledge optimization: within

a single stratum, the evaluation is optimized in each iteration by

considering the new tuples generated in the previous iteration. A

new tuple is generated in the current iteration only if it directly

depends on tuples generated in the previous iteration, therefore

avoiding the recomputation of tuples already computed in prior

iterations.

The standard semi-naïve evaluation is presented in Algorithm 1

for a single stratum. The inputs for the algorithm are 𝐸, the input

set of tuples (since this is a single stratum, the input may be EDB

tuples, or tuples from earlier strata), and 𝑃 , the set of Datalog rules

forming the stratum.

Algorithm 1 Semi-Naïve(𝐸, 𝑃)

1: Δ0 ← 𝐸

2: for all 𝑘 ∈ {1, 2, . . .} do
3: 𝐼𝑘−1 ←

⋃
0≤𝑖<𝑘 Δ𝑖

4: Δ𝑘 ← Π𝑃 [𝐼𝑘−1 | Δ𝑘−1] \ 𝐼𝑘−1
5: if Δ𝑘 = ∅ then
6: return 𝐼𝑘−1

This algorithm begins by initializing the delta and the full set

of tuples from the input (line 1). In the fix-point loop, line 4 is the

critical line, evaluating the Datalog rules. This line uses notation

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Woodstock ’18, June 03–05, 2018, Woodstock, NY David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

adapted from [26], which introduces a rule evaluation operator, Π,
where

Π𝑃 [𝐼 | Δ] =
{
𝑡

���� 𝑡 :- 𝑡1, . . . , 𝑡𝑛 is instantiation of rule in 𝑃 where

{𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼 and {𝑡1, . . . , 𝑡𝑛} ∩ Δ ≠ ∅

}
Here, Π𝑃 finds the head tuples of all rules in 𝑃 instantiated from

tuples in 𝐼 , where at least one body tuple also exists in Δ. For the
rest of this paper, the program 𝑃 is omitted from Π𝑃 where it is

clear. The dependence on Δ is the new knowledge optimization in

semi-naïve evaluation. By requiring that at least one body tuple for

each rule derivation is contained in Δ𝑘−1, the algorithm ensures

that new tuples are only generated from tuples that were new in

the previous iteration.

Algorithm 1 continues by merging the newly discovered tuples

into the full relation (line 3), and if a fix-point has been reached

(i.e., no new tuples are generated), then the evaluation ends (line 5).

As a concrete example of semi-naïve evaluation, consider the

recursive stratum containing vpt in the running example. In the ini-

tialization phase, the algorithm simply copies the inputs. Therefore,

in iteration 0,

Δ0 = 𝐼0 =

{
new(a, L1), new(c, L3), new(d, L4), assign(a, b),
assign(b, a), store(c, f, a), load(e, d, f), load(b, c, f)

}
In iteration 1, note that the vpt relation is empty in 𝐼0. Therefore,

only the non-recursive rule r1 can be applied, generating

Δ1 = {vpt(a, L1), vpt(c, L3), vpt(d, L4)}
𝐼1 = 𝐼0 ∪ Δ1

Using 𝐼1 and Δ1, the algorithm can now apply the recursive rules

of vpt as well. Rule r1 no longer applies, since there are no tuples

from relation new in Δ1. From rule r2, we can derive vpt(b,L1)
from the instantiation vpt(b,L1) :- assign(b,a), vpt(a,L1).
From rule r3, we can again derive vpt(b,L1), from vpt(b,L1) :-
load(b,c,f), store(c,f,a), vpt(a,L1), vpt(c,L3), vpt(c,L3).
Therefore, these two derivations generate the same tuple, and so,

Δ2 = {vpt(b, L1)}
𝐼2 = 𝐼1 ∪ Δ2

In iteration 3, rule r2 can generate vpt(a,L1). However, this
tuple is already contained in 𝐼2, and therefore 𝐼3 = 𝐼2 and a fixpoint

is reached.

2.3 Incremental Datalog Evaluation
Incremental evaluation refers to a procedure to update the result of
the Datalog computation given some changes in the input, without

performing a full recomputation. An incremental evaluation pro-

ceeds in epochs, where each epoch represents one round of updates,

i.e., inserting/deleting tuples from the input, and computing the

new result and state. We refer to the inserted and deleted tuples as

the diff. For the workflow in Fig. 2c, each 𝐼𝑘 represents the result

of epoch 𝑘 , and each Δ𝐸𝑘 represents the corresponding diff. To

summarize, the central problem of incremental evaluation is as

follows:

Definition 2.1 (Incremental Evaluation). Given a Datalog program
𝑃 , an input data set 𝐸, the result 𝑃 (𝐸), an insertion set 𝐸+ and a

deletion set 𝐸−, compute the result 𝑃 ((𝐸 ∪ 𝐸+) \ 𝐸−).

The cost of an update is usually measured by its impact. Typically

high impact changes result in more computation overhead.

Definition 2.2 (Incremental Update Impact). The impact of an

update is the number of IDB tuples changed as a consequence of

the update i.e., Δ𝐼 .

We note that while the state-of-the-art incremental evaluation

strategies, such as DRed [13], its related strategies [15, 16, 26], and

counting-based algorithms [23, 25] have proven worthwhile for ap-

plications where each update has a small impact on the computed

result, we have observed that this assumption does not hold in gen-

eral for all incremental workloads. For a concrete example, consider

our running example. We may remove the line L6 in Figure 3a as

part of an update to the software. This removed line would result

in the input tuple load(e,d,f) being removed. From the graph

in Figure 4, this only affects a single edge, and does not affect the

connected component containing a, b, and c. Therefore, computing

the result after performing this update should take advantage of

this separation, and this update has small impact. However, imag-

ine also removing the line L1 as part of the same software update.

Then, the input tuple new(a,L1) would be deleted, and both con-

nected components in Figure 4 would be affected. This results in

an update with large impact, where half of the tuples in vpt are

deleted, and all of the tuples in alias are deleted. In these situations,
where both small and large updates may be present, state-of-the-art

incremental evaluation strategies may not be effective.

3 ELASTIC INCREMENTAL EVALUATION
This section describes our algorithms for elastic incremental evalu-

ation. Recall from Fig. 2 that we have two evaluation procedures,

one to initialize the computation state and one to incrementally

update it. We call these evaluations Bootstrap and Update strategies,
respectively (see Fig. 2c). Our Bootstrap strategy mimics a standard

semi-naïve evaluation that also computes the computational state

to allow subsequent updates. The bootstrap strategy either initi-

ates the streaming or is a restart strategy for large updates. Recall

that the update strategy needs a notion of computational state 𝜎 ,

which is carried from one epoch to the next. Traditionally, this

computational state involves a long vector of numbers per tuple

in the IDB [23, 25], where each number represents a count in each

iteration of the fix-point computation. In the worst case, the length

of the vector is determined by the number of iterations𝑚 in the

fix-point computation. Hence, the state may exhibit a worst-case

space complexity of O(𝑚 |𝐼 |) where |𝐼 | is the size of the output.
Our approach maintains a lightweight state, where each tuple is

associatedwith a sparsified version of the traditional state, maintain-

ing only two numbers per tuple. Its worst-case space complexity is

O(|𝐼 |). Our lightweight computational state 𝜎 shortens the runtime

of the Bootstrap evaluation so that it can be used for high-impact

updates with the trade-off that the Update evaluation strategy may

require more work. When given an incremental update, we provide

a heuristic for switching between both strategies. Apart from the

initial epoch, we first attempt using the Update strategy. If it times

out (the time-out is set to some fraction using a switching param-
eter of the previous Bootstrap’s runtime strategy), we discard its

partial state and produce the output and the computational state

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Towards Elastic Incrementalization for Datalog Woodstock ’18, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

from scratch using Boostrap. The time-out is dependent on the

application and needs to be fine-tuned appropriately.

The computational state of our approach is formed by two num-

bers per tuple: The first number is a proof count (the number of

ways that the tuple can be derived in the iteration when it can be

deduced the first time), and the second number is the iteration in

which the tuple is first derived.

We introduce some notation for describing our approach. We

define a sequence of sets ⟨𝐷1, 𝐷2, . . .⟩ where set 𝐷𝑘 denotes the

set of rule instantiations. Set 𝐷𝑘 = {(𝑡 :- 𝑡1, . . . , 𝑡𝑛)} contains all
the rule instantiations that are computed in iteration 𝑘 . The proof

support count of tuple 𝑡 in iteration 𝑘 is the number of rule instan-

tiations (𝑡 :- 𝑡1, . . . , 𝑡𝑛) whose head is 𝑡 . For the sake of simplicity,

we defineN#
as a sequence of counting multisets for describing the

proof support of tuples. We use the standard definition of multisets,

where each N#

𝑘
= {(𝑡 ↦→ 𝑐)} denotes the number of rule instanti-

ation 𝑡 :- 𝑡1, . . . , 𝑡𝑛 for tuple 𝑡 in 𝐷𝑘 . For notational convenience,

we will express the elements with multiplicities 𝑡 ↦→ 𝑐 as 𝑡𝑐 .

3.1 Bootstrap Algorithm
The Bootstrap algorithm is a specialized counting algorithm for

efficiently computing the sequence of multisets from scratch mim-

icking a semi-naive evaluation producing the computational state

as a side-effect. For example, consider our running example. In the

initial phase, the input 𝐸 becomes iteration 0, where the counting

semantics mean that every tuple has a count of 1. Therefore,

N#

0
=

{
new(a, L1)1, new(c, L3)1, new(d, L4)1, assign(a, b)1,
assign(b, a)1, store(c, f, a)1, load(e, d, f)1, load(b, c, f)1

}
In iteration 1, we apply the non-recursive rule r1. In this case, all

tuples have a count of 1:

N#

1
=
{
vpt(a, L1)1, vpt(c, L3)1, vpt(d, L4)1

}
In iteration 2, however, the counting semantics causes a diver-

gence from the standard semi-naïve evaluation. Recall that the tuple

vpt(b,L1) is derivable from two rules:

(1) vpt(b, L1) :- assign(b, a), vpt(a, L1), and
(2) vpt(b, L1) :- load(b, c, f), store(c, f, a), vpt(a,

L1), vpt(c, l3), vpt(c, l3)

Therefore, vpt(b, L1) has a count of 2 in iteration 2:

N#

2
=
{
vpt(b, L1)2

}
In iteration 3, no new tuples are derivable. Therefore, a fixpoint

has been reached, and the Datalog evaluation ends.

We present the bootstrap algorithm in Algorithm 2. The main

extension from the standard semi-naïve evaluation (Algorithm 1)

is that the algorithm generates N#
, the sequence of multisets, in

contrast to the standard sets in standard semi-naïve. To compute

these multisets, we first introduce a version of the rule evaluation

operator that computes sets of rule instantiations:

Π𝐷
𝑃 [𝐼 | 𝐼in] ={
(𝑡 :- 𝑡1, . . . , 𝑡𝑛)

���� 𝑡 :- 𝑡1, . . . , 𝑡𝑛 in 𝑃 where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼

and {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼in ≠ ∅

}

From the Π𝐷
𝑃
operator, we can define a counting version:

Π#

𝑃 [𝐼 | 𝐼in] ={
𝑡𝑣

�� 𝑣 = #rule instantiations (𝑡 :- 𝑡1, . . . , 𝑡𝑛) ∈ Π𝐷
𝑃
[𝐼 | 𝐼in]

}
where 𝑣 is the number of ways that the tuple 𝑡 can be derived.

Algorithm 2 presents the light-weight bootstrap algorithm for

a single stratum. Its structure is almost identical to the standard

semi-naïve evaluation algorithm. The main difference for Bootstrap

is that it maintains a separate sequence of multisetsN#
, where each

N#

𝑘
is similar to Δ𝑘 of semi-naïve, and contains all the new tuples

computed in iteration 𝑘 . The algorithm begins by initializing N#

0

to be equal to 𝐸 (line 1). Here, the assignment of a set to a multiset

is defined as N#

0
= {(𝑡1) | 𝑡 ∈ 𝐸}, where every element of 𝐸 is

taken with a count of 1. In the fixpoint loop, the algorithm first

creates a set projection of the current iteration’s multiset (line 3),

where the operator taking the support of a multiset is defined as

Supp(N#

𝑘−1) = {𝑡 | (𝑡
𝑐) ∈ N#

𝑘−1 and 𝑐 > 0}. Intuitively, Supp(N)
is the set of tuples in N with count greater than 0. The algorithm

also computes the full state of the relations up to iteration 𝑘 − 1
(line 4), in the same way as the semi-naïve algorithm. These two

auxiliary sets, 𝐵𝑘−1 and 𝐼𝑘−1, are used in the rule evaluation on

line 5. This rule evaluation computes all tuples that are new in the

current iteration. The set minus operation is an abuse of notation,

operating as a filter to exclude any tuples that were computed in

earlier iterations. The algorithm exits if there are no new tuples

generated in the current iteration, returning the evaluation state

(𝐸,N#) (line 6).

Algorithm 2 Bootstrap(𝐸)

1: N#

0
← 𝐸 ⊲ N#

0
← {(𝑡1) | 𝑡 ∈ 𝐸}

2: for all 𝑘 ∈ {1, 2, . . .} do
3: 𝑁𝑘−1 ← Supp(N#

𝑘−1)
4: 𝐼𝑘−1 ← ∪0≤𝑖≤𝑘−1𝐵𝑖
5: N#

𝑘
← {(𝑡𝑣) ∈ Π# [𝐼𝑘−1 | 𝐵𝑘−1] | 𝑡 ∉ 𝐼𝑘−1}

6: if Supp(N#

𝑘
) = ∅ then

7: return (𝐸,N#)

Correctness. To demonstrate the correctness of Algorithm 2, we

need to show that it computes the same resulting set of tuples as

standard semi-naïve evaluation (Algorithm 1). To do this, we need

to demonstrate two basic properties: (a) each 𝑁𝑘 of Bootstrap is

equal to Δ𝑘 of semi-naïve, and (b) both Bootstrap and semi-naïve

evaluation terminate after the same number of iterations. To show

this, we introduce the following lemma:

Lemma 3.1. Given a Datalog program 𝑃 , for all 𝐴, 𝐵 such that
𝐵 ⊆ 𝐴, Supp(Π#

𝑃
[𝐴 | 𝐵]) = Π𝑃 [𝐴 | 𝐵].

This property can be shown since a tuple 𝑡 ∈ Π𝑃 [𝐴 | 𝐵] if and
only if there is a rule instantiation that computes it. If this is the

case, then the same rule instantiation also fits Π#

𝑃
[𝐴 | 𝐵] with a

count of at least one. As a corollary, we can show that Bootstrap and

semi-naïve both produce the same set of tuples in each iteration.

Lemma 3.2. Given a Datalog program 𝑃 and an input set 𝐸, each
𝐼𝑘−1 of Bootstrap is equal to 𝐼𝑘−1 of semi-naïve.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Woodstock ’18, June 03–05, 2018, Woodstock, NY David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

This can be shown by an induction over 𝑘 , since Supp(N#

𝑖
) =

Δ𝑖 (from Lemma 3.1) for each iteration 𝑖 , then the result in each

iteration must be identical to semi-naïve. Note that both Bootstrap

and semi-naïve terminate after the same number of iterations since

Supp(N#

𝑖
) = Δ𝑖 for every iteration 𝑖 , and therefore Supp(N#

𝑖
) = ∅

if and only if Δ𝑖 = ∅. Therefore, both algorithms terminate after

the same number of iterations, and thus produce the same set of

resulting tuples.

The computational state generated by Bootstrap is sparse since a

tuple can only be contained at most in a single setN#

𝑖
. The exclusion

clause in Line 5, i.e., 𝑡 ∉ 𝐼𝑘−1, ensures that property.

3.2 Incremental Update Algorithm
The Update algorithm is a procedure that takes a computational

state, either computed by Bootstrap or by a previous Update, and a

set of changes to the inputs. The algorithm updates the computa-

tional state to reflect the changes that result from the input changes

and produces the output for the epoch.

At a high level, there are two cases for how a tuple update is

handled: (1) A tuple is inserted if it is the head of an instantiated

rule where either (a) one of the tuples in the body of the rule is

newly inserted in the current epoch, (b) the same head tuple was

deleted in a prior iteration and there is an alternative derivation

in the current iteration. (2) A tuple is deleted if it is the head of an

instantiated rule where either (a) one of the tuples in the body of the
rule is deleted in the current epoch, or (b) an alternative derivation

is found for the tuple in an earlier iteration current epoch.

The incremental update algorithm also introduces extended no-

tation over Bootstrap. The rule evaluation notation, Π𝑃 [𝐼 | 𝐼in],
denotes tuples resulting from rules in 𝑃 instantiated from 𝐼 , with at

least one body tuple also in 𝐼in. This is extended with

Π#

𝑃 [𝐼 | 𝐼1 | 𝐼2] ={
𝑡𝑣

����� 𝑣 = number of rule instantiations 𝑡 :- 𝑡1, . . . , 𝑡𝑛
in 𝑃 where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼 and {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼1 ≠ ∅
and {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼2 ≠ ∅

}
This notation derives tuples from rule instantiations where at least

one body tuple is from 𝐼1, and also at least one body tuple is from

𝐼2. In Update, 𝐼1 and 𝐼2 would be the deltas from semi-naïve eval-

uation and the diffs from the incremental update, allowing it to

compute tuples that are newly changed in the current iteration of

the current epoch. Additionally, the algorithm uses ⊕ and ⊖, the
standard multiset addition and subtraction operators for operations

involving multisets.

The update algorithm computes the updates to the sequence

of multisets N#
, which result from applying the insertions and

deletions to the input. The algorithm also makes use of a number

of auxiliary sets: 𝐼𝑜
𝑘
and 𝐼𝑘 maintain the full sets of tuples up to

iteration 𝑘 for the previous and current epoch respectively, 𝐼−
𝑘
and

𝐼+
𝑘
maintain the tuples that are deleted and inserted respectively

up to iteration 𝑘 , and 𝑁𝑜
𝑘
and 𝑁𝑘 are the simple set projections of

N#𝑜
𝑘

and N#

𝑘
and store the tuples that are new in iteration 𝑘 in the

previous and current epoch respectively.

Algorithm 3 is presented for a single stratum, and takes the state

the previous epoch (𝐸,N#𝑜), and the incremental update (𝐸−, 𝐸+)
consisting of a set of tuples to be deleted and a set of tuples to

Algorithm 3 Update((𝐸,N#𝑜), (𝐸−, 𝐸+))
Ensure: 𝐸− ⊆ 𝐸, 𝐸 ∩ 𝐸+ = ∅
1: N#

0
← 𝐸 \ 𝐸− ∪ 𝐸+

2: 𝐼−
0
← 𝐸−

3: 𝐼+
0
← 𝐸+

4: for all 𝑘 ∈ {1, 2, . . .} do
5: 𝑁𝑘−1 ← Supp(N#

𝑘−1)
6: 𝑁𝑜

𝑘−1 ← Supp(N#𝑜
𝑘−1)

7: 𝐼𝑘−1 ← ∪0≤𝑖≤𝑘−1𝑁𝑖

8: 𝐼𝑜
𝑘−1 ← ∪0≤1≤𝑘−1𝑁

𝑜
𝑖

9: N#

𝑘
← N#𝑜

𝑘
⊖(Π# [𝐼𝑜

𝑘−1 | 𝑁
𝑜
𝑘−1 | 𝐼

−
𝑘−1] \ 𝐼

𝑜
𝑘−1)

⊕(Π# [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1] \ 𝐼𝑘−1)
⊕(𝐼−

𝑘−1 ∩ Π# [𝐼𝑜
𝑘−1 ∩ 𝐼𝑘−1 | 𝑁𝑘−1] \ 𝐼𝑘−1)

10: N#

𝑘
← {(𝑡𝑣) ∈ N#

𝑘
| 𝑡 ∉ 𝐼+

𝑘−1}
11: 𝐼−

𝑘
← (𝐼−

𝑘−1 \ 𝑁𝑘) ∪ (𝑁𝑜
𝑘
\ 𝐼𝑘)

12: 𝐼+
𝑘
← (𝐼+

𝑘−1 \ 𝑁
𝑜
𝑘
) ∪ (𝑁𝑘 \ 𝐼𝑜𝑘)

13: if N#

𝑘
= 0 then

14: return (𝐸 \ 𝐸− ∪ 𝐸+,N#)

be inserted, respectively. Note that N#
may be the IDB sequence

from the bootstrap stage, B#
, or it may be the result of a previous

incremental update. The algorithm begins by initializing the state

of the input by applying 𝐸− and 𝐸+, and storing the result in N#

0

(line 1). Then, the algorithm initializes the sets 𝐼−
0
and 𝐼+

0
to be the

updates in iteration 0.

In the fixpoint loop, the rule evaluation on line 9 is the core part

of this algorithm. This step starts with the multiset of tuples from

the previous epoch and applies deletions and insertions resulting

from applying Datalog rules. The deletion term, Π# [𝐼𝑜
𝑘−1 | 𝑁

𝑜
𝑘−1 |

𝐼−
𝑘−1] \𝐼

𝑜
𝑘−1, computes tuples that are deleted in the current iteration

as a result of a derivation where the body contains both a tuple in

the delta (𝑁𝑜
𝑘−1) and a deleted tuple (𝐼−

𝑘−1). This abuses notation
(similarly to line 5 of Bootstrap) to exclude tuples that were in

earlier iterations in the previous epoch, preventing over-deletion

since the tuples would not be present in the current iteration due

to sparsification. The insertion term, Π# [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1] \
𝐼𝑘−1, computes tuples that are inserted as a result of the body of a

derivation containing an inserted tuple. Tuples that already exist

in previous iterations (i.e., tuples that are contained in 𝐼𝑘−1) are
excluded to maintain the sparsification invariant. The re-discovery

term, 𝐼−
𝑘−1∩Π[𝐼

𝑜
𝑘−1∩𝐼

𝑛
𝑘−1 | 𝑁𝑘−1], computes tuples that are deleted

in previous iterations 𝐼−
𝑘−1, but where an alternative derivation

exists in the current iteration. This re-discovery rule applies in the

situation where a tuple is deleted from some iteration, but can still

be derived in a later iteration. In this case, the re-discovery term

computes this later derivation.

The sparsification term (line 10) does not perform any rule evalu-

ation, but instead excludes tuples from iteration𝑘 that were inserted

in an earlier iteration (as a result of a new derivation). These tuples

should be deleted to maintain the sparsification invariant that a

tuple is only present in a single iteration in any given epoch.

The algorithm continues by updating the 𝐼−
𝑘
and 𝐼+

𝑘
sets (lines 11

and 12). Computing 𝐼−
𝑘
(line 11) takes the deletion set from the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Towards Elastic Incrementalization for Datalog Woodstock ’18, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

previous iteration 𝐼−
𝑘−1 and excludes the tuples that are newly com-

puted in the current iteration 𝑁𝑘 , along with tuples that are deleted

in the current iteration (𝑁𝑜
𝑘
\ 𝐼𝑛

𝑘
). Similarly, computing 𝐼+

𝑘
(line 12)

takes the insertion set from the previous iteration, and excludes

tuples that already existed in the current iteration in the previous

epoch (since these tuples already existed, so are not newly inserted

in the current epoch), along with tuples that are inserted in the

current iteration.

Correctness. To show the correctness of our incremental update

algorithm, we must show that it computes the same sequence of

multisets as if we had applied bootstrap to the altered input. In

other words, we need to show that given a Datalog program 𝑃 , an

input set 𝐸, a deletion set 𝐸− and an insertion set 𝐸+, computing

the result directly via Bootstrap(𝐸𝑏 = 𝐸 \ 𝐸− ∪ 𝐸+) is equal to
Update(Bootstrap(𝐸), (𝐸−, 𝐸+)). The central parts of the algorithm
computing these results are lines 9 and 10. Before the final correct-

ness proof, we need some intermediate properties of the 𝑁𝑘 sets

and the 𝐼− and 𝐼+ sets. The next important properties are that the

validity properties of the 𝐸 sets (i.e., that 𝐸+ ∩ 𝐸 = ∅ and 𝐸− ⊆ 𝐸)

also hold for the 𝐼𝑜 , 𝐼−, and 𝐼+ sets during the incremental update

algorithm. Similar properties relating 𝐼− and 𝐼+ sets to the current

epoch’s 𝐼 sets are also required. The eventual goal is to show that

𝐼𝑘 = 𝐼𝑜
𝑘
\ 𝐼−

𝑘
∪ 𝐼+

𝑘
for each iteration 𝑘 , which is an important result

for showing the correctness of the rule evaluations.

Lemma 3.3. For each iteration 𝑘 , we have (1) 𝐼−
𝑘
⊆ 𝐼𝑜

𝑘
and 𝐼−

𝑘
∩ 𝐼𝑘 =

∅, and (2) 𝐼+
𝑘
∩ 𝐼𝑜

𝑘
= ∅ and 𝐼+

𝑘
⊆ 𝐼𝑘 .

To sketch the proof for this property, we perform an induction

over the iterations. The base case holds because of the definition of

𝐼−
0
and 𝐼+

0
. Then, for each subsequent iteration, consider line 11 of

Algorithm 3. Here, 𝐼−
𝑘
takes the value of (𝐼−

𝑘−1\𝑁𝑘)∪(𝑁𝑜
𝑘
\𝐼𝑘). In the

first part of the union, the property holds for 𝐼−
𝑘−1 by the induction

hypothesis. In the second part of the union, 𝑁𝑜
𝑘
is a subset of 𝐼𝑜

𝑘
by definition. Therefore, 𝐼−

𝑘
⊆ 𝐼𝑜

𝑘
. By similar arguments on line 12,

𝐼+
𝑘
⊆ 𝐼𝑘 . The second part of the property, i.e., that 𝐼−

𝑘
∩ 𝐼𝑘 = ∅ can

be shown by a similar induction argument, again consider line 11.

As a corollary, we can show that the 𝐼− and 𝐼+ sets are correct.

Corollary 3.4. For each iteration 𝑘 , we have 𝐼𝑘 = 𝐼𝑜
𝑘
\ 𝐼−

𝑘
∪ 𝐼+

𝑘
.

It remains to be shown that Update is correct. Our criteria for

correctness is that it computes the same sequence of multisets as if

we had applied the bootstrap algorithm to the updated input, i.e.,

that B#

𝑖
= N#

𝑖
for each iteration 𝑖 . This is the central theorem for

our correctness proof.

Theorem 3.5. Given 𝑃 , 𝐸, 𝐸−, and 𝐸+ as above, N#

𝑖
as computed

by IncrementalUpdate(Bootstrap(𝐸), (𝐸−, 𝐸+)) is equal to B#

𝑖
as com-

puted by Bootstrap(𝐸 \ 𝐸− ∪ 𝐸+) for each iteration 𝑖 .

The proof of Theorem 3.5 is an induction over the iterations,

and in each step, it considers all four parts of lines 9 and 10. By

arguments over which sets each tuple is contained in, and careful

consideration of the subset relationships between them, we can

show that the counting multisets are the same as those produced

by Bootstrap.

Sparsification. Another important property of our elastic incre-

mental evaluation strategy is the sparsification invariant.

Lemma 3.6 (Sparsification Invariant). For each iteration 𝑘 , the
sets 𝑁𝑘 are disjoint.

This property ensures that every tuple is only computed in a

single iteration, with this iteration being the earliest one in which

it is computed.

Re-discovery rules as a notion of provenance. The re-discovery
part of the rule evaluation part of Algorithm 3 is (the last part of

line 9) is critical for maintaining the sparsification property of our

algorithm. The rule evaluation 𝐼−
𝑘−1 ∩ Π[𝐼𝑜

𝑘−1 ∩ 𝐼
𝑛
𝑘−1 | 𝑁𝑘−1] states

that we compute tuples that were deleted in an earlier iteration (i.e.,

exist in 𝐼−
𝑘−1), but an alternative derivation exists for the current

iteration (Π[𝐼𝑜
𝑘−1 ∩ 𝐼

𝑛
𝑘−1 | 𝑁𝑘−1]). This re-discovery rule is a notion

of provenance for the deleted tuples. Provenance is defined as “dis-

covering the derivations for a tuple”, and this fits the process of

finding derivations from 𝐼𝑜
𝑘−1∩ 𝐼

𝑛
𝑘−1 for all the deleted tuples. There-

fore, we adapt techniques from [41] to compute these re-discovery

rules.

3.3 Stratified Negation and Constraints
Our algorithms thus far have omitted any notion of negation or

constraints. However, both negation and constraints are powerful

and common extensions of Datalog. Constraints are a simpler case

than negation, and may take the form of arithmetic constraints

such as A < B or A != B where A and B are grounded variables (i.e.,

variables also occurring in a positive body predicate) or constants.

In an instantiated rule, a constraint is satisfied if the instantiated

arithmetic constraint is satisfied. For example,

alias(Var1,Var2) :- vpt(Var1,Obj), vpt(Var2,Obj),
Var1 != Var2

is a rule with arithmetic constraints, and an instantiation of the

rule only derives a tuple if the inequality constraint is satisfied by

the values given to Var1 and Var2.
Negation is more complicated than simple arithmetic constraints.

Syntactically, negations are denoted as a negated predicate with

the ! symbol. For example, the rule

path(X,Z) :- edge(X,Y), path(Y,Z), !edge(X,Z)

computes all the paths in a graph which are not direct edges. A

negated predicate must contain only grounded variables or con-

stants, and a negated predicate is satisfied if and only if the corre-

sponding tuple (resulting from an instantiation) is not computable.

The standard semantics for negation in Datalog is stratified nega-
tion. In this semantics, recursive negation is not permitted, and

any negated predicates must be of a relation from either input or

a previous stratum. With this semantics, a negated predicate is

similar to a constraint, where only a simple check of the input

for a stratum is needed to determine whether it is satisfied or not.

However, the truth value of a negation may change as a result of

tuples being inserted or deleted from the negated relation. To adapt

our Datalog evaluation algorithms to support stratified negation

and constraints, the rule evaluation is extended to support these

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Woodstock ’18, June 03–05, 2018, Woodstock, NY David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

features. The rule evaluation operator, Π#
is extended so that

Π#

𝑃 [𝐼 | 𝐼in] =𝑡𝑣
������ 𝑣 = #instantiations 𝑡 :- 𝑡1, . . . , 𝑡𝑛, !𝑡𝑛+1, . . . , !𝑡𝑛+𝑚,𝜓

in 𝑃 where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼 , {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼in ≠ ∅,
{𝑡𝑛+1 . . . 𝑡𝑛+𝑚} ∩ 𝐼 = ∅, and𝜓 is satisfied

where𝜓 denotes the instantiated arithmetic constraints occurring

in the rule. Replacing the rule evaluation operator in Bootstrap

(Algorithm 2) with this extended version allows the algorithm to

support stratified negation and constraints. However for incre-

mental update, the extension is more involved, since introducing

negation also introduces new cases for deleting/inserting tuples.

For example, consider the rule

path(X,Z) :- edge(X,Y), path(Y,Z), !edge(X,Z).

If we have a rule instantiation

path(a,c) :- edge(a,b), path(b,c), !edge(a,c)

where edge(a,c) is inserted as a result of an incremental update,

then the head tuple path(a,c) must be deleted since the negation

is no longer satisfied. The opposite situation may arise where the

deletion of a tuple may lead to the insertion of a consequent tuple.

Therefore, we further extend the rule evaluation operator so that

Π#

𝑃 [𝐼 | 𝐼1 | 𝐼2, 𝐼
′
2
] =𝑡

𝑣

��������
𝑣 = #instantiations 𝑡 :- 𝑡1, . . . , 𝑡𝑛, !𝑡𝑛+1, . . . , !𝑡𝑛+𝑚,𝜓

in 𝑃 where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼 , {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼1 ≠ ∅,
{𝑡𝑛+1 . . . 𝑡𝑛+𝑚} ∩ 𝐼 = ∅,𝜓 is satisfied, and

({𝑡1, . . . , 𝑡𝑛} ∩ 𝐼2 ≠ ∅ or {𝑡𝑛+1 . . . , 𝑡𝑛+𝑚} ∩ 𝐼 ′
2
≠ ∅)

With this rule evaluation operator, a new tuple is derived if the

rule instantiation contains body tuples from 𝐼 , where at least one

positive body tuple is also in 𝐼1, and either there is a positive body

tuple in 𝐼2 or a negative body tuple in 𝐼 ′
2
. Using this notation, the

rule evaluation step of Algorithm 3 (line 9) becomes

N#

𝑘
← N#

𝑘
⊖ (Π# [𝐼𝑜

𝑘−1 | 𝑁
𝑜
𝑘−1 | 𝐼

−
𝑘−1, 𝐼

+
0
] \ 𝐼𝑜

𝑘−1)
⊕ (Π# [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1, 𝐼

−
0
] \ 𝐼𝑘−1)

⊕ (𝐼−
𝑘−1 ∩ Π[𝐼𝑜

𝑘−1 ∩ 𝐼𝑘−1 | 𝑁𝑘−1])
where the first and second terms now handle stratified negation.

The deletion term, Π# [𝐼𝑜
𝑘−1 | 𝑁

𝑜
𝑘−1 | 𝐼

−
𝑘−1, 𝐼

+
0
] \ 𝐼𝑜

𝑘−1, now computes

tuples that are deleted, either as a result of a deleted positive body

tuple (𝐼−
𝑘−1) or an inserted negated body tuple (𝐼+

0
). We use iteration

0 for the negated tuples since stratified negation enforces that

negations must be from the input of the current stratum. Similarly,

the insertion term, Π# [𝐼𝑛
𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1, 𝐼

−
0
] \ 𝐼𝑛

𝑘−1, computes

tuples that are inserted either as a result of an inserted positive

body tuple or a deleted negative body tuple. The other parts of the

algorithms involve manipulating and merging relations, and are

independent of the Datalog rules. Therefore, no changes are needed

to support negation or constraints. Hence, with the extensions to

the rule evaluation presented above, our algorithms fully support

Datalog with stratified negation and constraints.

4 INTEGRATION INTO SOUFFLÉ
In this section we outline how are approach is integrated in the Souf-

flé Datalog engine, including several optimizations for incremental

evaluation.

4.1 Core Implementation
Specialized data structures. Soufflé internally uses a highly spe-

cialized, parallel B-tree data structure to store relations. For in-

cremental evaluation, we associate each tuple with an iteration

number and a count. Therefore, the internal data structures must

be extended to allow for these auxiliary attributes. Importantly,

these auxiliary attributes may be updated, e.g., in the case of a

new derivation being discovered, the count must be incremented.

Thus, we implemented an update mechanism, along with adapt-

ing the existing optimistic locking mechanism to support parallel

operation.

Rule evaluation. The standard rule evaluation algorithms in Souf-

flé are extended to support the extra operations in the incremental

evaluation algorithms. Soufflé uses nested loop joins for evaluating

rules, which incorporate extra conditions and existence checks to

ensure correctness. For incremental evaluation, further specialized

existence checks are required e.g., a tuple in diff_minus may not

actually be deleted, and only one of its derivations is deleted. There-

fore, we need a specialized existence check in the full relation to

check its count to determine if the tuple is fully deleted or not.

Moreover, separate versions of the rule evaluations are required for

the bootstrap and incremental update algorithms.

Other operations. Along with the rule evaluation extensions,

other operations such as merges between iterations, and a cleanup

operation between epochs, are also required. In standard semi-naïve

evaluation, at the end of each iteration, new tuples computed in that

iteration are merged into the full relation, and this also becomes

the delta for the following iteration. For incremental evaluation,

further operations may take place, e.g., eager computation of the

delta of the previous epoch, and eager computation of diff_plus
and diff_minus. In between epochs, the incremental evaluation

algorithms also require a cleanup stage, where the diff_plus and

diff_minus relations are merged into the full relations to update

the state in preparation for the following epoch.

4.2 Optimizations
Eager vs. lazy diff_plus and diff_minus. The diff_plus and

diff_minus relations store tuples that are inserted and deleted

in the current epoch, respectively. However, there is extra com-

putation involved with the diff_plus and diff_minus relations,
in lines 11 and 12. Here, a tuple in diff_plus may not actually

be newly inserted - it may be a new derivation for a tuple that

already existed. Similarly, a tuple in diff_minus may not actually

be deleted - an alternative derivation may still hold. Thus, we need

to check the full relation to determine if a tuple in diff_plus or

diff_minus is actually inserted or deleted, respectively. This check
may be performed eagerly during the merge step in each itera-

tion, with results stored in separate relations actual_diff_plus
and actual_diff_minus, or lazily inside the rule evaluation. For

the sake of clarity, our algorithms are presented with eager diff

computations, which can be seen in lines 11 and 12. A lazy diff

version would incorporate this computation directly in the rule

evaluation. This design decision is a tradeoff: eagerly computing

diff_plus and diff_minus may result in wasted computation for

tuples that are not considered in any rules, while lazy computation

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Towards Elastic Incrementalization for Datalog Woodstock ’18, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

may mean the same check of the full relation is performed multiple

times for a single tuple, if it occurs in multiple rule derivations. Our

experiments, however, indicate that this tradeoff generally favors

eager diffs, where it can amortize the checks for tuples which occur

in multiple rule derivations. For our benchmarks, the difference is

generally within 15% in favor of eager diffs, but it can provide up

to 4× speed up in some situations.

Filtering for re-discovery rules. The elastic algorithm includes the

notion of re-discovery, which is required due to its sparsification.

In the re-discovery rules, the algorithm finds all tuples which have

been deleted in an earlier iteration, but where an alternative deriva-

tion still exists for the current iteration. Naïvely, this could be done

by instrumenting a rule as:

R :- diff_minus_R, R1, . . . , R𝑘 .

However, in some cases this can cause a problematic join, if there

are few variables in common between the diff_minus_R atom and

the remaining atoms in the rule. For example,

R(𝑥,𝑦, 𝑧) :- diff_minus_R(𝑥,𝑦, 𝑧), R1 (𝑥, 𝑎), R2 (𝑦, 𝑎), R3 (𝑧, 𝑎).

may cause a duplication of work in R1 (𝑥, 𝑎) if there are many

tuples in diff_minus_R with the same 𝑥 value. Our solution is to

divide the diff_minus relation so that it never causes extra work.

R(𝑥,𝑦, 𝑧) :- diff_minus_R𝑥 (𝑥), R1 (𝑥, 𝑎), R2 (𝑦, 𝑎),
diff_minus_R𝑦 (𝑦), R3 (𝑧, 𝑎), diff_minus_R𝑧 (𝑧).

Dividing the diff_minus relations ensures that each variable

only acts as a filter, and cannot multiply the work of the other

atoms in the rule. Here, the 𝑥 variable is scheduled first, since

we assume that diff_minus_R𝑥 (𝑥) is smaller than R1 (𝑥, 𝑎) (since
we assume that changes between epochs are smaller than the full

result). However, the other variables must be scheduled after their

corresponding atom, to prevent a cross-product with the previous

atom. This strategy of considering the attributes in each literal is

an adaptation of ideas from worst-case optimal joins [28, 40]. Our

benchmarks show that this technique is generally 2.5× faster than

the naïve strategy, while in some situations it can be up to 15×
faster.

Scheduling. Scheduling for join orders plays an important role

in the performance of Datalog rules [18, 34, 35]. With incremental

evaluation, the assumption that the diffs are smaller than the full

relations allows for better heuristics for automatic scheduling. By

using this assumption, scheduling diff_plus or diff_minus first

in a rule evaluation generally improves performance by restricting

the size of the search as early as possible. However, care must be

taken to avoid cross-products. For example, consider the following

rule:

R(𝑎, 𝑑) :- R1 (𝑎, 𝑏), R2 (𝑏, 𝑐), diff_minus_R3 (𝑐, 𝑑) .

In this case, moving diff_minus_R
3
(𝑐, 𝑑) to the front of the

rule would create a cross-product with R1 (𝑎, 𝑏), and may lead to

worse performance than the original schedule. Hence, using simple

automatic scheduling techniques, such asmaximizing the number of

bound variables in each atom, is crucial tomaintain the performance

of incremental evaluation.

5 EXPERIMENTAL EVALUATION
This experimental section aims to demonstrate the following claims:

Claim I: Inviability of single incremental evaluations on variable

update use cases.

Claim II: The elastic incremental evaluation with a simple switch

heuristic performs better compared to existing single strat-

egy incremental evaluations, both in terms of runtime and

memory usage, over a series of varying sized incremental

updates.

Experimental Setup. Our experiments are run on anAMDThread-

ripper 2990WX machine with 128 GB memory, running Ubuntu

20.10 with GCC 10.2 used to generate all Soufflé executables. All

experiments are run with 8 threads, and all I/O time is excluded

from measurements.

We evaluate three versions of Soufflé: (1) Soufflé: Non-Incremental

Soufflé engine. (2) Soufflé-counting: A baseline counting incremen-

tal algorithm implemented in Souffle with optimizations. (3) Soufflé-

elastic: The implementation of the technique presented in this pa-

per. When necessary we differentiate between elastic-update and

elastic-bootstrap algorithms.

We also compare our approach to an industrial strength incre-

mental Datalog engine, Differential Datalog (DDLog) [32], which

uses Differential Dataflow [23] as a backend. DDLog with Differen-

tial Dataflow is a state-of-the-art incremental engine which uses a

variant of the counting algorithm.

We perform our evaluations using a set of dynamic Datalog use

cases adapted by Frank McSherry
1
for benchmarking incremental

Datalog engines. The use cases are described below:

(1) Doop [6]: a points-to prorgam analysis framework for Java

programs. This is a subset of the Doop program analysis

library ported for DDLog. This use case exhibits characteris-

tics: large number of rules, relations with complex recursion.

(2) CRDT: an implementation of a conflict-free replicated data

type in Datalog. This use cases resembles an in between

ruleset with a medium number of rules and relations of

moderate complexity.

(3) Galen [30]: a medical ontology inference task implemented

in Datalog. This use case represents a typical ontological use

case consisting a a small number of rules and relations with

simple recursive structure.

Some basic statistics for the benchmarks are included in Table 1.

To evaluate the performance of incremental evaluation algorithms,

sets of small, medium, and large updates were generated for each

benchmark, by randomly choosing a subset of EDB tuples that are

incrementally deleted and inserted.

Table 1: Benchmark Statistics

Benchmark Number of rules EDB size IDB size

Doop 90 11,014,960 41,665,029

CRDT 31 259,778 2,668,247

Galen 6 976,552 24,483,561

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Woodstock ’18, June 03–05, 2018, Woodstock, NY David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

0 200 400 600 800 1000

update size

10−1

100

101

102

103

104

u
p

d
at

e
ru

n
ti

m
e

(s
)

souffle-counting

souffle-elastic-update

ddlog

(a) Doop

20 40 60 80 100

update size

101

u
p

d
at

e
ru

n
ti

m
e

(s
)

(b) CRDT

0 20000 40000 60000 80000 100000

update size

10−1

100

101

102

103

u
p

d
at

e
ru

n
ti

m
e

(s
)

(c) Galen

Figure 5: Incremental update size vs. runtime. The horizontal line in each figure is the runtime of non-incremental Soufflé on
the respective benchmark, and the upwards arrows indicate the time outs.

5.1 Single Strategy Incremental Evaluation
In these sets of experiments we only consider single strategy evalua-

tions, that is, we only include our Update (elastic-update) evaluation

and thus do not switch to Bootstrap. In these experiments we do

not establish the supremacy of any one technique. Rather, we show

that single strategies are not viable compared to non-incremental

evaluation. The results for the runtime of incremental updates for

each evaluation implementation are shown in Fig. 5. These results

are computed for one cycle of an update set, where an update set is

a randomly selected subset of EDB tuples, and a cycle consists of

one epoch where the update set is deleted followed by one epoch

where the update set is inserted. The horizontal line on each bench-

mark represents the runtime if non-incremental Soufflé were to

perform the same task, i.e., running the whole benchmark twice

from scratch. For each benchmark, there is a general trend that

larger updates require more runtime. However, this performance is

highly unpredictable, even if the size of the incremental update is a

constant.

Consider the performance of incremental evaluation for Doop,

in Fig. 5a. Here, there are five separate small update sets, which are

each generated by randomly choosing 10 EDB tuples, and running

one cycle. These small updates all finished within two seconds,

which is vastly faster than non-incremental Soufflé. For these small

incremental updates all evaluations were very fast on average due

to their very low impact, only affecting up to 25 of the IDB tuples.

DDlog and elastic-update performed well and on a par. Our general

observation is that incremental evaluation is highly effective for

these lightweight updates. For the 100 update size, the smallest

impact was 88 IDB tuples, and the largest impact was 53,816 IDB

tuples. As anticipated, this increased the variability of the results.

The elastic-update, exhibited large extremities, finishing within 5

seconds for the fastest, while more than 5000 seconds for two up-

date sets. DDLog, also had a high variance, with the fastest runtime

being 5 seconds, and the slowest being 213 seconds, well over the

non-incremental engine time. Curiously, the fastest incremental

update was also one of the higher impact ones, affecting 22,347

IDB tuples, while the slowest affected 140 IDB tuples, indicating

that neither the size of the EDB updates, nor the size of the impact

1
https://github.com/frankmcsherry/dynamic-datalog

are always helpful in predicting the runtime of the incremental

update. While Soufflé-counting was generally faster than DDLog,

it still exhibited a large variance, with runtimes ranging between

1.4 and 18 seconds. For the larger update sets, containing 400, 700,

and 1000 tuples respectively, all evaluation strategies failed to com-

pete with non-incremental Soufflé. For example, elastic-update was

unable to complete any of the update sets within the time limit.

These timed-out updates consisted of tuples that were deep in a

complex recursive structure, indicating that the elastic-update algo-

rithm does not handle these large impact updates well. Likewise the

counting algorithms implemented in both DDLog and in Soufflé ex-

hibited generally poor performance compared to non-incremental

Soufflé. Furthermore, these larger updates exhibited even greater

variability, particularly for Soufflé-counting.

The results for CRDT, in Fig. 5b tell a similar story. Here, even

small updates consisting of 10 EDB tuples exhibit unpredictable

and poor performance. In comparison to Doop, the small updates

for CRDT have a much larger impact, affecting between 3,444 and

35,130 IDB tuples. However, even this larger impact is around 1%

of the IDB, and even with these overall small impacts, the runtime

of incremental update is considerably slower than re-running the

computation from scratch in Soufflé. Similarly to Doop, the perfor-

mance for larger updates only gets worse. For updates containing 40

EDB tuples, the runtimes varied between 9 and 13 seconds. While

this variation is smaller than for Doop, the result still indicates

that the performance of incremental evaluation is unpredictable.

For larger updates containing 70 and 100 EDB tuples, DDLog was

around 5× slower than non-incremental Soufflé, despite the update

being only around 0.04% of the EDB and impacting only up to 3.4%

of the IDB tuples. Update and Soufflé-counting were both more

performant, however still slower than non-incremental Soufflé. It

is interesting to note that the impact on the IDB tuples was much

more consistent for CRDT when compared with Doop. For example,

with updates containing 100 EDB tuples, the impact on IDB tuples

ranged between 85,726 and 91,384 tuples. This may be due to the

much simpler structure of the CRDT application, which contains

a larger pre-processing stage followed by a very small recursive

stratum.

On the other hand, Galen performed far better with DDLog for

incremental evaluation. One reason for this is that Galen has a

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Towards Elastic Incrementalization for Datalog Woodstock ’18, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

simple ruleset consisting of only 6 Datalog rules, but with chal-

lenging join characteristics. For these joins, DDLog is better op-

timized, and is able to out-perform Soufflé for these incremental

workloads. For small updates consisting of 10 EDB tuples, an in-

cremental update takes between 0.1 and 0.2 seconds, providing far

superior performance compared to a non-incremental engine. Even

for medium sized updates consisting of 10,000 EDB tuples, the per-

formance of DDLog’s incremental update is generally faster than

non-incremental Soufflé. Only when we consider larger updates of

40,000, 70,000, and 100,000 EDB tuples, or 4%, 7%, and 10% respec-

tively, does the performance of incremental evaluation slow down

considerably compared to non-incremental Soufflé. The impact of

these larger updates on the IDB is up to 53M tuples, which is almost

double the original IDB size. This impact indicates that not only

are most of the IDB tuples affected, but they are even affected in

multiple iterations. Given this large impact, it is no surprise that

the runtime for such an incremental update is slower than simply

re-computing the result from scratch, and in fact, DDLog performs

well on this benchmark compared to non-incremental Soufflé. For

Galen, the Soufflé incremental strategies do not perform as well.

Soufflé-counting is generally an order of magnitude slower for up-

dates than DDLog, as a result of unfavorable join orderings. Update

fares even worse, timing out for the larger updates above 10,000

EDB tuples. This is a result of these updates impacting tuples across

multiple iterations, which the sparsification of the elastic strategy

does not handle well.

These results indicate that state-of-the-art single strategy in-

cremental evaluation algorithms perform well on small impact

updates. However, they may be out-performed by a standard non-

incremental Datalog engine for more complex applications or high

impact changes. Overall, we demonstrate Claim I by highlight-
ing the unpredictability and tendency for degraded perfor-
mance of single strategy evaluations on large impact updates
compared to non-incremental Soufflé.

5.2 Elastic Incremental Evaluation
In this section, we evaluate the performance of our elastic incre-

mental evaluation strategy, that is we evaluate the combination
of the Update algorithmwith Bootstrap.We use an empirically

determined switching parameter of 20% to determine when to use

the Update, and when to switch to Bootstrap. That is, if the update

time is more than 20% of the previous bootstrap time, we restart

using Bootstrap.

For this experiment, we use example workloads for incremental

evaluation, which consists of 13 epochs. The first epoch is the

initial evaluation, then the following 6 epochs are small updates,

with alternating deletion and insertions. These are followed by

one large update in epoch 7, then followed by another 4 small

updates, with a large update as the final epoch. We note that these

patterns may appear in all three of these benchmarks. For Doop,

there is a common pattern of software updates consisting of a large

refactor, followed by a number of smaller commits addressingminor

comments. For CRDT, which is an application commonly used for

collaborative online text editing, a large update may result from a

large portion of text being moved around, while a smaller update

may result from smaller additions or deletions from the text. For

Galen, which is a medical ontology application associated with

patient diagnosis, a large update may result from a medical test

result being updated, while a smaller update may result from a

minor symptom change.

For Doop, in Fig. 6a, all of the incremental evaluation strate-

gies are able to effectively incrementalize for the small updates.

However, the main differences across the full workload are a re-

sult of the bootstrap strategy, with both the initial evaluation and

the large updates being faster or on-par with the state-of-the-art

counting strategy. As a result, the elastic incremental strategy

is able to complete this workload in 245 seconds, compared to

284 seconds for Soufflé-counting, and 467 seconds for DDLog. In

comparison, non-incremental Soufflé, which evaluates each epoch

from scratch, achieves 304 seconds for this workload. This use

case demonstrates that an elastic incremental evaluation is ef-
fective for the complex Doop benchmark. We demonstrate
an overall amortized net gain compared to non-incremental
Soufflé as well as single strategy evaluations.

For CRDT, in Fig. 6b, none of the incremental evaluation strate-

gies are effective, even for the small updates. Here, the elastic strat-

egy hits the 20% heuristic threshold for all updates, despite the up-

date strategy actually being slightly faster than bootstrap, if it were

allowed to run to completion. For this workload, non-incremental

Soufflé completes all epochs in 19 seconds, followed by 25 seconds

for the Soufflé-counting, 31 seconds for Soufflé-elastic, and 56 sec-

onds for DDLog. For this particular application, we conclude
that incremental evaluation in general is ineffective.

For Galen, in Fig. 6c, the incremental evaluation strategies were

able to perform reasonably well. For epochs 1 and 5, the elastic

update strategy reached the 20% heuristic threshold, thus triggering

a bootstrap. If this threshold was not in place, the elastic update

would have been faster for these small updates. Despite this, Soufflé-

elastic is still highly competitive compared to the other incremental

evaluation strategies, being able to finish the workload in 384 sec-

onds, compared to 445 seconds for DDLog. Soufflé-counting was

ineffective for the large updates for Galen, In comparison, non-

incremental Soufflé required 370 seconds for this workload. The
results demonstrate that our elastic evaluation is competi-
tive for the Galen use case.

Overall, the experimental evaluation has validated Claim
II by showing a large performance improvement compared
to single strategy approaches. The limited overhead of our Boot-

strap evaluation makes up for any cost induced by the Update

evaluation. We believe with improved heuristics and tuning, this

improvement can be further maximized.

Along with runtime, another aspect of performance is memory

usage. For example in large program analysis use cases memory has

been shown to be a limiting factor [20]. Table 2 shows the minimum,

average and maximum memory usage across all the update sets for

each benchmark. These results show that non-incremental Soufflé

uses the least memory by far, since it does not need to keep the extra

state that incremental evaluation requires. Among the incremental

engines, Soufflé-elastic performs best, since it only keeps the counts

for one iteration for each tuple. On the other hand, the counting

algorithm, both in Soufflé and in DDLog, require to keep the count

of each tuple for every iteration it is generated in, thus using extra

memory to maintain this extra state.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Woodstock ’18, June 03–05, 2018, Woodstock, NY David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

0 1 2 3 4 5 6 7 8 9 10 11 12

epoch

10−1

100

101

102

103

ru
n

ti
m

e
(s

)

souffle

souffle-elastic

souffle-counting

ddlog

(a) Doop

0 1 2 3 4 5 6 7 8 9 10 11 12

epoch

100

101

ru
n

ti
m

e
(s

)

(b) CRDT

0 1 2 3 4 5 6 7 8 9 10 11 12

epoch

10−1

100

101

102

103

ru
n

ti
m

e
(s

)

(c) Galen

Figure 6: Runtimes for an elastic workload. For each benchmark, the first epoch is an initial evaluation, followed by 6 epochs
of small updates, then one large update, then 4 epochs of small updates, then one large update.

Table 2: Memory usage for each engine, showing the mini-
mum, average, and maximum memory usage across all of
the update sets

Bench. Engine Min (MB) Avg (MB) Max (MB)

Doop Soufflé 1,759 1,762 1,764

Soufflé-elastic 7,473 7,492 7,505

Soufflé-counting 9,106 9,449 11,387

DDLog 17,381 23,352 27,851

CRDT Soufflé 42 42 42

Soufflé-elastic 335 346 352

Soufflé-counting 328 337 344

DDLog 786 829 858

Galen Soufflé 901 931 960

Soufflé-elastic 5,641 5,672 5,698

Soufflé-counting 14,588 17,974 21,034

DDLog 15,333 20,862 26,461

6 RELATEDWORK
There is a large corpus of incremental algorithms in related fields

including Databases [5], Logic-programming [33], Compilers [31],

Model-checking [36] and SAT solving [22]. In this section we fo-

cus exclusively on Datalog evaluation. The main body of work in

incremental Datalog evaluation is related to the Delete-Rederive

(DRed) algorithm [13]. The main weakness of this approach con-

cerns over-deletion. This is resolved by re-deriving tuples that are

over-deleted. The Counting algorithm presented in [13] is appli-

cable only for non-recursive Datalog programs. For this approach,

each tuple is associated with a count of the number of different

derivations that exist for that tuple. When removing or inserting a

new tuple, that count is decremented or incremented respectively,

and a tuple may be removed if the count reaches 0. However, with

recursive Datalog programs, deleting tuples may cause the recursive

decrement of the count, thus again leading to over-deletion. More

recent developments include the Backward/Forward algorithm [26]

and DRed
c
[15], which are both optimizations of the DRed algo-

rithm. The aim of these approaches is to reduce the approximation

induced by the over-deletion step. Backward/Forward uses a form

of backwards evaluation to eagerly check if over-deleted tuples still

have a proof from the remaining input, while DRed
c
maintains

separate recursive and non-recursive counters to track the num-

ber of derivations of each tuple. While these approaches indeed

reduce the over-deletion of DRed, they are still approximations and

worst-case scenarios may exhibit large run-time overheads. Tech-

niques like [12] use provenance information in the form of Boolean

formulae for each tuple to determine if a deleted tuple has proof

support. The Differential Dataflow (DDF) system [23] implements

incremental evaluation for Dataflow programming. The approach

is similar to the counting algorithm, with each tuple being asso-

ciated with a count for the number of derivations for that tuple.

However, DDF permits recursive programs by storing a count per
iteration of recursive evaluation. Its advantage is that it computes a

precise result for an incremental update. However, the setting of

Dataflow programming is different from Datalog, and more similar

to stream programming, where programs tend to be less complex

with smaller updates. Differential Datalog [32] is a Datalog engine

built on top of DDF. Other systems, such as RDFox [25], and Lad-

dder [39] implement variations of the DDF algorithm, specialized to

their respective domains. In comparison with existing approaches,

our elastic evaluation is unique in that it has two evaluation phases,

recognising the importance of specializing the Bootstrap phase to

initialize the computation. Our algorithms form a sparsified varia-

tion of the counting algorithm, allowing for the efficient Bootstrap

phase, and lowering the space overhead per tuple.

7 CONCLUSION
In this paper, we have demonstrated the pitfalls of existing in-

cremental evaluation algorithms for use cases with varying sized

updates. We have proposed the use of an elastic approach for incre-

mental evaluation. We switch between a low overhead Bootstrap

strategy that targets large impact updates and an Update strategy

that targets low impact updates. We propose a simple heuristic for

switching between the two strategies. Using this setup we have

shown that the elastic approach is effective in use cases where sin-

gle strategy incremental evaluation struggles to perform adequately

compared to regular Datalog evaluation.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley Publishing Company.

[2] Nicholas Allen, Bernhard Scholz, and Padmanabhan Krishnan. 2015. Staged
Points-to Analysis for Large Code Bases. Springer Berlin Heidelberg, 131–150.

https://doi.org/10.1007/978-3-662-46663-6_7

12

https://doi.org/10.1007/978-3-662-46663-6_7

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Towards Elastic Incrementalization for Datalog Woodstock ’18, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[3] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria, Australia)

(SIGMOD ’15). ACM, New York, NY, USA, 1371–1382. https://doi.org/10.1145/

2723372.2742796

[4] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek, Alan J.

Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, Sean

McLaughlin, Jason Reed, Neha Rungta, John Sizemore, Mark A. Stalzer, Preethi

Srinivasan, Pavle Subotic, Carsten Varming, and Blake Whaley. 2019. Reacha-

bility Analysis for AWS-Based Networks. In Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part II. 231–241.

[5] Andrey Balmin, Yannis Papakonstantinou, and Victor Vianu. 2004. Incremental

Validation of XML Documents. ACM Trans. Database Syst. 29, 4 (Dec. 2004),

710–751. https://doi.org/10.1145/1042046.1042050

[6] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-

tion of Sophisticated Points-to Analyses. SIGPLAN Not. 44, 10 (2009), 243–262.
https://doi.org/10.1145/1639949.1640108

[7] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R.

Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig, and

Mark R. Tuttle. 2020. Code-Level Model Checking in the Software Develop-

ment Workflow. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering in Practice (Seoul, South Korea) (ICSE-
SEIP ’20). Association for Computing Machinery, New York, NY, USA, 11–20.

https://doi.org/10.1145/3377813.3381347

[8] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.

2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),

62–70.

[9] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Giga-

horse: Thorough, Declarative Decompilation of Smart Contracts. In Proceedings
of the 41th International Conference on Software Engineering, ICSE 2019. ACM,

Montreal, QC, Canada, (to appear).

[10] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Giga-

horse: thorough, declarative decompilation of smart contracts. In Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle

(Eds.). IEEE / ACM, 1176–1186. https://doi.org/10.1109/ICSE.2019.00120

[11] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,

and Yannis Smaragdakis. 2018. MadMax: Surviving Out-of-Gas Conditions in

Ethereum Smart Contracts. In SPLASH 2018 OOPSLA.
[12] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. 2007.

Update Exchange with Mappings and Provenance. In In Very Large Data Bases
(VLDB. 675–686.

[13] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Subrahmanian.

1993. Maintaining views incrementally. ACM SIGMOD Record 22, 2 (1993),

157–166.

[14] Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura. 2011. 𝜇Z– An Effi-

cient Engine for Fixed Points with Constraints. In Computer Aided Verification,
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 457–462.

[15] Pan Hu, Boris Motik, and Ian Horrocks. 2018. Optimised maintenance of datalog

materialisations. In Thirty-Second AAAI Conference on Artificial Intelligence.
[16] Pan Hu, Boris Motik, and Ian Horrocks. 2019. Modular Materialisation of Datalog

Programs. (2019).

[17] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog

and Emerging Applications: An Interactive Tutorial. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data (Athens, Greece)
(SIGMOD ’11). ACM, 1213–1216. https://doi.org/10.1145/1989323.1989456

[18] Muhammad Imran, Gábor E Gévay, and Volker Markl. 2020. Distributed Graph

Analytics with Datalog Queries in Flink. In Software Foundations for Data Inter-
operability and Large Scale Graph Data Analytics. Springer, 70–83.

[19] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis

of Program Analyzers. Proceedings of Computer Aided Verification 28 (2016),

422–430.

[20] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis

of program analyzers. In International Conference on Computer Aided Verification.
Springer, 422–430.

[21] Grigoris Karvounarakis, Todd J. Green, Zachary G. Ives, and Val Tannen. 2013.

Collaborative Data Sharing via Update Exchange and Provenance. ACM Trans.
Database Syst. 38, 3, Article 19 (Sept. 2013), 42 pages.

[22] Yousef Kilani, Mohammad Bsoul, Ayoub Alsarhan, and Ahmad Al-Khasawneh.

2013. A Survey of the Satisfiability-Problems Solving Algorithms. Int. J. Adv. Intell.
Paradigms 5, 3 (Sept. 2013), 233–256. https://doi.org/10.1504/IJAIP.2013.056447

[23] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential Dataflow.. In CIDR.
[24] Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason Eisner. 2020. Neural Dat-

alog Through Time: Informed Temporal Modeling via Logical Specification. In

Proceedings of the 37th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.).

PMLR, 6808–6819.

[25] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2019. Maintenance of

datalog materialisations revisited. Artificial Intelligence 269 (2019), 76–136.
[26] Boris Motik, Yavor Nenov, Robert Edgar Felix Piro, and Ian Horrocks. 2015.

Incremental update of datalog materialisation: the backward/forward algorithm.

In Twenty-Ninth AAAI Conference on Artificial Intelligence.
[27] Derek Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and

Martin Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP) (proceedings of the 24th
acm symposium on operating systems principles (sosp) ed.). ACM.

[28] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal

join algorithms. Journal of the ACM (JACM) 65, 3 (2018), 1–40.
[29] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. 2005. MulVAL:

A Logic-based Network Security Analyzer. In Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14 (Baltimore, MD) (SSYM’05). USENIX
Association, Berkeley, CA, USA, 8–8. http://dl.acm.org/citation.cfm?id=1251398.

1251406

[30] Alan L Rector, Jeremy E Rogers, and Pam Pole. 1996. The GALEN high level

ontology. In Medical Informatics Europe’96. IOS Press, 174–178.
[31] Thomas Reps. 1982. Optimal-Time Incremental Semantic Analysis for Syntax-

Directed Editors. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Albuquerque, New Mexico) (POPL ’82).
Association for Computing Machinery, New York, NY, USA, 169–176. https:

//doi.org/10.1145/582153.582172

[32] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. Datalog 2 (2019),

4–5.

[33] Diptikalyan Saha and C. R. Ramakrishnan. 2006. Incremental Evaluation of

Tabled Prolog: Beyond Pure Logic Programs. In Practical Aspects of Declarative
Languages, Pascal Van Hentenryck (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 215–229.

[34] Jiwon Seo, Stephen Guo, and Monica S Lam. 2013. Socialite: Datalog extensions

for efficient social network analysis. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 278–289.

[35] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,

and Carlo Zaniolo. 2016. Big data analytics with datalog queries on spark. In

Proceedings of the 2016 International Conference on Management of Data. 1135–
1149.

[36] Oleg V. Sokolsky and Scott A. Smolka. 1994. Incremental Model Checking in the

Modal Mu-Calculus. In IN CAV, VOLUME 818 OF LNCS. Springer-Verlag, 351–363.
[37] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-

driven points-to analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and

Richard P. Gabriel (Eds.). ACM, 59–76. https://doi.org/10.1145/1094811.1094817

[38] Pavle Subotić. 2020. Concise Explanations in Static Analysis Driven Code Re-

views. (2020). https://www.youtube.com/watch?v=FPCZ2TIxrpg&t=8888s Infer

Practitioners 2020.

[39] Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremental Whole-

Program Analysis in Datalog with Lattices. (2021).

[40] Todd L Veldhuizen. 2012. Leapfrog triejoin: A simple, worst-case optimal join

algorithm. arXiv preprint arXiv:1210.0481 (2012).
[41] David Zhao, Pavle Subotić, and Bernhard Scholz. 2020. Debugging Large-scale

Datalog: A Scalable Provenance Evaluation Strategy. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 42, 2 (2020), 1–35.

[42] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun

Mao. 2010. Efficient Querying and Maintenance of Network Provenance at

Internet-Scale. Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data (2010), 615–626.

A PROOFS FOR THEOREMS
A.1 Proof of Lemma 3.2

Proof. This proof is by induction over the iterations𝑘 . For𝑘 = 1,

the semi-naïve algorithm takes Δ0, while the bootstrap algorithm

takes Supp(B#

0
). Both of these sets are defined to be 𝐸, so are equal.

For the induction hypothesis, assume that all 𝐼𝑖−1 of bootstrap equal
𝐼𝑖−1 of semi-naïve. Then, Supp(B#

𝑖
) = Δ𝑖 by Lemma 3.1. Therefore,

adding Supp(𝐵#
𝑖
) or Δ𝑖 to the union results in the same set. □

13

https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/1042046.1042050
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1504/IJAIP.2013.056447
http://dl.acm.org/citation.cfm?id=1251398.1251406
http://dl.acm.org/citation.cfm?id=1251398.1251406
https://doi.org/10.1145/582153.582172
https://doi.org/10.1145/582153.582172
https://doi.org/10.1145/1094811.1094817
https://www.youtube.com/watch?v=FPCZ2TIxrpg&t=8888s

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Woodstock ’18, June 03–05, 2018, Woodstock, NY David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

A.2 Proof of Lemma 3.3
Proof. This proof is by induction over the iterations. For 𝑘 = 0,

𝐼−
0
is defined as 𝐸− and 𝐼+

0
is defined as 𝐸+, so properties (1) and (2)

hold by definition.

The induction hypothesis is that for iteration 𝑘 − 1, we have

𝐼−
𝑘−1 ⊆ 𝐼𝑜

𝑘−1, 𝐼
−
𝑘−1 ∩ 𝐼𝑘−1 = ∅, 𝐼

+
𝑘−1 ∩ 𝐼

𝑜
𝑘−1 = ∅, and 𝐼

+
𝑘−1 ⊆ 𝐼𝑘−1.

For property (1), we show that 𝐼−
𝑘
⊆ 𝐼𝑜

𝑘
. Consider line 11 of

Algorithm 3, where 𝐼−
𝑘
takes the value of (𝐼−

𝑘−1 \𝑁𝑘) ∪ (𝑁𝑜
𝑘
\ 𝐼𝑘). In

the first part of this union, 𝐼−
𝑘−1 ⊆ 𝐼𝑜

𝑘−1 by the induction hypothesis.

Therefore, also 𝐼−
𝑘−1 ⊆ 𝐼𝑜

𝑘
, since 𝐼𝑜

𝑘−1 is monotonically growing. In

the second part of the union, 𝑁𝑜
𝑘
⊆ 𝐼𝑜

𝑘
by definition of 𝐼𝑜

𝑘
. Therefore,

𝐼−
𝑘
⊆ 𝐼𝑜

𝑘
.

To show that 𝐼−
𝑘
∩ 𝐼𝑘 = ∅, consider the same line. In the first

part of the union, 𝐼−
𝑘−1 ∩ 𝐼𝑘−1 = ∅ by the induction hypothesis.

We then exclude 𝑁𝑘 , and since 𝐼𝑘 = 𝐼𝑘−1 ∪ 𝑁𝑘 by definition, then

(𝐼−
𝑘−1 \ 𝑁𝑘) ∩ 𝐼𝑘 = ∅. In the second part of the union, we exclude

𝐼𝑘 . Therefore, 𝐼
−
𝑘
∩ 𝐼𝑘 = ∅.

Property (2) holds by similar arguments on line 12. □

A.3 Proof of Lemma 3.4
Proof. To prove this, we first show that 𝐼𝑜

𝑘
\ 𝐼𝑘 = 𝐼−

𝑘
by showing

both directions of inclusion. The reverse direction, i.e., that 𝐼−
𝑘
⊆

𝐼𝑜
𝑘
\𝐼𝑘 is a direct corollary of Lemma 3.3, that 𝐼−

𝑘
⊆ 𝐼𝑜

𝑘
and 𝐼−

𝑘
∩𝐼𝑘 = ∅.

For the forward direction, consider some tuple 𝑡 ∈ 𝐼𝑜
𝑘
\ 𝐼𝑘 . Then, 𝑡

must be in some 𝑁𝑜
𝑖
\ 𝐼𝑘 for some 𝑖 ≤ 𝑘 . Since 𝐼𝑖 ⊆ 𝐼𝑘 , 𝑡 is also in

𝑁𝑜
𝑖
\ 𝐼𝑖 . Therefore, 𝑡 ∈ 𝐼−𝑖 . Also, 𝑡 cannot be removed from 𝐼− in a

later iteration, since 𝑡 ∉ 𝐼𝑘 , and therefore, 𝑡 ∈ 𝐼−
𝑘
.

We have shown both directions of inclusion, and therefore, 𝐼𝑜
𝑘
\

𝐼𝑘 = 𝐼−
𝑘
. By a similar argument, 𝐼𝑘 \ 𝐼𝑜𝑘 = 𝐼+

𝑘
. From these equalities,

we have:

𝐼𝑜
𝑘
\ 𝐼−

𝑘
∪ 𝐼+

𝑘
= 𝐼𝑜

𝑘
\ (𝐼𝑜

𝑘
\ 𝐼𝑘) ∪ (𝐼𝑘 \ 𝐼𝑜𝑘)

= (𝐼𝑜
𝑘
∩ 𝐼𝑘) ∪ (𝐼𝑘 \ 𝐼𝑜𝑘)

= 𝐼𝑘

□

A.4 Proof of Theorem 3.5
Proof. For this proof, we mainly consider the underlying sets

of derivations rather than the counting multisets, since the count-

ing multisets do not distinguish between different derivations. We

introduce some new notation to convert between derivations and

tuples: 𝜙 ((𝑡 :- 𝑡1, . . . , 𝑡𝑛)) := 𝑡 takes the head tuple of a derivation.

The proof is an induction over the iterations. The initial step,

where 𝑘 = 0, is true since both B#

0
and N#

0
take on the value of

𝐸 \ 𝐸− ∪ 𝐸+, where every tuple has a count of 1.

The induction hypothesis is that for all 0 ≤ 𝑖 < 𝑘 , we have

B#

𝑖
= N#

𝑖
. We consider each of the four terms in lines 9 and 10. We

first need to show that the sets of derivations computed by these

lines are disjoint, so that the algorithm does not double count.

• For the deletion term (we label it (1)), we have the derivations
{𝑑 ∈ Π𝐷 [𝐼𝑜

𝑘−1 | 𝑁
𝑜
𝑘−1 | 𝐼

−
𝑘−1] | 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1}.
• For the insertion term (labelled (2)), we have derivations

{𝑑 ∈ Π𝐷 [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1] | 𝜙 (𝑑) ∉ 𝐼𝑘−1}. Since 𝐼+𝑘−1 ∩
𝐼𝑜
𝑘−1 = ∅ (from Corollary 3.4), then (2) ∩ (1) = ∅, since (1)
takes derivations only from 𝐼𝑜

𝑘−1.

• For the re-discovery term (labelled (3)), we have derivations
{𝑑 ∈ Π𝐷 [𝐼𝑜

𝑘−1 ∩ 𝐼𝑘−1 | 𝑁𝑘−1] | 𝜙 (𝑑) ∈ 𝐼−
𝑘−1 and 𝜙 (𝑑) ∉

𝐼𝑘−1}. Since this takes derivations from 𝐼𝑜
𝑘−1, and 𝐼𝑜

𝑘−1 ∩
𝐼+
𝑘−1 = ∅, then (3) ∩ (2) = ∅. Also, since 𝐼−

𝑘−1 ⊆ 𝐼𝑜
𝑘−1 (from

Corollary 3.4), we have (3) ∩ (1) = ∅, since (1) excludes
tuples from 𝐼𝑜

𝑘−1.
• For the sparsification term (labelled (4)), we have N#

𝑘
⊖

(N#

𝑘
∩ 𝐼+

𝑘−1). However, note that this term is processed after

the three other terms. Therefore, it naturally excludes (1),
and so (4) ∩ (1) = ∅. Moreover, we have 𝐼+

𝑘−1 ⊆ 𝐼𝑘−1 (from
Corollary 3.4), and so (4) ∩ (3) = ∅ and (4) ∩ (2) = ∅, since
both (3) and (2) exclude 𝐼𝑘−1.

Since all 4 terms produce disjoint derivations, the algorithm does

not double count when adding or removing any derivations. Next,

we need to prove that for any derivation in N𝐷𝑜
𝑘

and not in N𝐷
𝑘
, it

is removed by one of the four terms, and vice versa.

Consider a derivation 𝑑 ∈ N𝐷𝑜
𝑘
\ N𝐷

𝑘
. By definition, 𝑑 ∈ {𝑑 ∈

Π𝐷 [𝐼𝑜
𝑘−1 | 𝑁

𝑜
𝑘−1] | 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1} \ {𝑑 ∈ Π
𝐷 [𝐼𝑘−1 | 𝑁𝑘−1] | 𝜙 (𝑑) ∉

𝐼𝑘−1}. Then, there are two cases. The first case is that 𝜙 (𝑑) ∈ 𝐼𝑘−1.
In this case, also 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1, by our assumption, and so 𝜙 (𝑑) ∈
𝐼+
𝑘−1 (by Corollary 3.4). Therefore, 𝑑 would be removed by the

sparsification term which removes all tuples that are in 𝐼+
𝑘−1. The

second case is that 𝑑 ∉ Π𝐷 [𝐼𝑘−1 | 𝑁𝑘−1]. In this case, one of the

body tuples of 𝑑 is in 𝐼𝑜
𝑘−1 \ 𝐼𝑘−1 (or in 𝑁𝑜

𝑘−1 \ 𝑁𝑘−1, which implies

also that it is in 𝐼𝑜
𝑘−1 \ 𝐼𝑘−1), which equals 𝐼−

𝑘−1 (by Corollary 3.4).

Therefore, 𝑑 ∈ Π𝐷 [𝐼𝑜
𝑘−1 | 𝑁

𝑜
𝑘−1 | 𝐼

−
𝑘−1], and since 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1 by
assumption, it would be removed by the deletion term.

Now, for the opposite case, consider a derivation 𝑑 ∈ N𝐷
𝑘
\N𝐷𝑜

𝑘
.

We want to show that this derivation is inserted by one of the

four terms. By definition, 𝑑 ∈ {𝑑 ∈ (Π𝐷 [𝐼𝑘−1 | 𝑁𝑘−1] | 𝜙 (𝑑) ∉
𝐼𝑘−1}\{𝑑 ∈ Π𝐷 [𝐼𝑜

𝑘−1 | 𝑁
𝑜
𝑘−1] | 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1}. Like the deletion case,
there are two cases. The first is that at least one of the body tuples

of 𝑑 are in 𝐼𝑘−1 \ 𝐼𝑜𝑘−1. Then, this tuple is in 𝐼+
𝑘−1, and therefore,

𝑑 ∈ Π𝐷 [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1]. Since 𝜙 (𝑑) ∉ 𝐼𝑘−1 by assumption,

then 𝑑 will be inserted by the insertion term. The second case is if

𝜙 (𝑑) ∈ 𝐼𝑜
𝑘−1. Then, since 𝜙 (𝑑) ∉ 𝐼𝑘−1, 𝜙 (𝑑) ∈ 𝐼𝑜𝑘−1 \ 𝐼𝑘−1 = 𝐼−

𝑘−1. If
the first case doesn’t hold, we know that all of the body tuples are

not in 𝐼𝑘−1 \ 𝐼𝑜𝑘−1, and therefore, they must all be in 𝐼𝑜
𝑘−1. Therefore,

𝑑 ∈ Π𝐷 [𝐼𝑜
𝑘−1 ∩ 𝐼𝑘−1 | 𝑁𝑘−1]. Since 𝜙 (𝑑) ∉ 𝐼𝑘−1 by assumption, 𝑑

would be inserted by the re-discovery term. □

B ADDITIONAL EXPERIMENTAL DATA

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Towards Elastic Incrementalization for Datalog Woodstock ’18, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Benchmark Engine Updates Epoch 0 (sec) Epoch 1 (-) (sec) Epoch 2 (+) (sec) Memory (MB)

doop Soufflé-elastic(update) 10 64.53

min 0.20

max 5.62

min 0.20

max 0.42 7486.5

100 66.22

min 4.63

max 13624.27

min 0.38

max 2.98 7497.4

400 - - - -

700 - - - -

1000 - - - -

Soufflé-counting 10 113.64

min 0.50

max 1.00

min 0.50

max 1.11 9116.2

100 116.00

min 0.78

max 9.05

min 0.77

max 9.49 9131.4

400 114.00

min 10.20

max 632.30

min 10.90

max 695.00 9540.6

700 113.81

min 21.26

max 129.37

min 22.60

max 147.66 9539.8

1000 116.92

min 14.40

max 428.29

min 16.70

max 500.99 9917.3

DDLog 10 164.53

min 0.07

max 1.85

min 0.02

max 1.67 17495.4

100 167.83

min 2.57

max 102.51

min 2.30

max 110.29 20682.4

400 169.45

min 90.65

max 145.37

min 101.38

max 146.70 25002.1

700 164.86

min 115.14

max 205.84

min 129.22

max 185.37 26350.2

1000 167.35

min 149.71

max 232.32

min 148.30

max 205.08 27230.5

crdt Soufflé-elastic(update) 10 1.99

min 1.64

max 1.74

min 1.45

max 1.51 338.7

40 1.96

min 1.93

max 2.10

min 1.67

max 1.78 345.7

70 1.96

min 2.32

max 2.68

min 2.01

max 2.58 349.3

100 2.00

min 2.51

max 2.90

min 2.05

max 2.65 351.8

Soufflé-counting 10 2.98

min 1.58

max 1.69

min 1.62

max 1.74 331.4

40 3.02

min 1.83

max 1.99

min 1.80

max 2.00 336.6

70 3.10

min 2.15

max 2.32

min 2.11

max 2.34 338.6

100 2.92

min 2.21

max 2.47

min 2.19

max 2.49 341.6

DDLog 10 8.52

min 0.71

max 5.97

min 0.69

max 5.74 804.5

40 8.61

min 4.69

max 6.56

min 4.47

max 6.72 825.4

70 8.59

min 7.02

max 7.36

min 6.78

max 7.33 833.1

100 8.50

min 7.29

max 7.62

min 7.08

max 7.28 851.8

galen Soufflé-elastic(update) 10 60.69

min 2.48

max 20.29

min 0.17

max 0.24 5666.9

10000 59.64

min 37.16

max 94.22

min 0.29

max 0.62 5676.2

40000 - - - -

70000 - - - -

100000 - - - -

Soufflé-counting 10 415.63

min 0.40

max 1.44

min 0.53

max 1.64 14595.4

10000 415.05

min 147.14

max 203.44

min 146.88

max 239.68 15799.4

40000 422.35

min 568.20

max 902.38

min 612.21

max 977.07 18776.6

70000 411.63

min 996.40

max 1130.46

min 1025.11

max 1216.50 20027.0

100000 414.45

min 1131.57

max 1602.21

min 21.03

max 1377.78 20671.6

DDLog 10 152.09

min 0.09

max 0.20

min 0.06

max 0.09 15602.4

10000 154.10

min 19.69

max 28.02

min 20.78

max 27.14 16771.1

40000 152.70

min 74.72

max 96.72

min 77.23

max 99.10 22027.8

70000 154.10

min 107.76

max 130.03

min 110.19

max 132.05 24195.4

100000 157.96

min 135.58

max 160.32

min 137.96

max 168.43 25712.8

Table 3: Running times and memory usage for Dynamic Datalog Benchmarks, each min and max value denotes the minimum
andmaximum runtimes over 5 different datasets of the corresponding update size, - denotes timeout, and variations in Epoch
0 runtime are due to re-runs of the experiment

15

	Abstract
	1 Introduction
	2 Background
	2.1 Example: Datalog Pointer Analysis
	2.2 Semi-Naïve Evaluation
	2.3 Incremental Datalog Evaluation

	3 Elastic Incremental Evaluation
	3.1 Bootstrap Algorithm
	3.2 Incremental Update Algorithm
	3.3 Stratified Negation and Constraints

	4 Integration into Soufflé
	4.1 Core Implementation
	4.2 Optimizations

	5 Experimental Evaluation
	5.1 Single Strategy Incremental Evaluation
	5.2 Elastic Incremental Evaluation

	6 Related Work
	7 Conclusion
	References
	A Proofs for Theorems
	A.1 Proof of Lemma 3.2
	A.2 Proof of Lemma 3.3
	A.3 Proof of Lemma 3.4
	A.4 Proof of Theorem 3.5

	B Additional Experimental Data

