
BinHunter: A Fine-Grained Graph Representation for Localizing Vulnerabilities in
Binary Executables*

Sima Arasteh∗, Jelena Mirkovic†, Mukund Raghothaman∗ and Christophe Hauser‡
∗Thomas Lord Department of Computer Science

University of Southern California, Los Angeles, CA 90089
Email: {arasteh, raghotha}@usc.edu

†Information Sciences Institute and Thomas Lord Department of Computer Science
University of Southern California, Los Angeles, CA 90089

Email: mirkovic@isi.edu
‡Department of Computer Science

Dartmouth College, Hanover, NH 03755
Email: Christophe.Hauser@dartmouth.edu

Abstract—The success of deep learning techniques in diverse
fields has prompted research into their application for automatic
software vulnerability discovery. The first step in the design of
a deep learning based vulnerability detector fundamentally
involves selecting an appropriate binary representation. A
second challenge arises from the need to automatically localize
the vulnerability to specific instructions, so as to allow for
better detection and to enable downstream applications such
as triage and patching.

In this paper, we propose BinHunter, an automated tool for
vulnerability discovery in binary programs. BinHunter leverages
a new graph representation derived from slices of the combined
control and data dependency graphs of a binary executable,
and can learn code properties by propagating information
through the graph edges. This representation enables graph
convolutional network (GCN) learning algorithms to both detect
and pinpoint the locations of vulnerabilities in binary programs.

We evaluate our approach both using the Juliet test suite
and a dataset consisting of historical CVEs from the Debian
packages. In both evaluations, we observe that BinHunter is
significantly more effective than the baselines: On the Juliet
test programs, our model has 6.77%, 26.53%, 24.65% and
41.59% higher true positive rates and 19%, 47.64%, 31.47% and
39.82% lower false positive rates than our baselines respectively
(Bin2vec [1], Asm2vec [10], Genius [12] and Jtrans [46]).
Furthermore, our model is able to detect 17 of 21 bugs from
the Debian dataset, Bin2vec detects 2 bugs, and the remaining
three baselines are unable to detect any vulnerabilities at all.

Index Terms—Vulnerability discovery, deep learning, graph
convolutional networks

* This material is based on research sponsored by the National Science
Foundation via contracts 2146518, 2107261, and 1815495. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the National Science Foundation.

1. Introduction

The frequent unavailability of source code and the
diversity of programming languages used to build software
necessitates techniques that can directly detect vulnerabilities
from the compiled binary versions of programs. Researchers
have explored a range of static and dynamic techniques for
vulnerability discovery in binaries.

Among static analysis techniques, signature-based ap-
proaches [5], [29], [33], [48] rely on pattern recognition.
Since these approaches define specific rules for each vul-
nerability type, they can detect only certain kinds of vul-
nerabilities and are sensitive to binary code alterations.
More recently, machine learning-based techniques have
been proposed that rely on manual feature extraction for
vulnerability discovery [11], [12], [15], [17], [20], [47]. In
this context, deep learning-based techniques promise to free
researchers from manual feature extraction necessary for
conventional (non deep-learning-based) methods and have
demonstrated promising outcomes across various domains [3],
[4], [18], [19], [36], [39], [41].

On the other hand, applying deep learning methods [1],
[10], [42], [45] for vulnerability discovery raises other types
of questions: How do we represent the program, determine
the granularity (statements, basic blocks, functions, etc.)
at which detection is performed, and what neural network
model do we use? Most function-level techniques [1], [10],
[12], [20], [30], [47] build on sequence-based models from
natural-language processing (NLP), and do not directly access
information about data and control dependencies (for e.g.,
user-controlled inputs being passed to a database without
sanitization) that more directly indicate the presence of vul-
nerabilities. As a consequence, most of these techniques have
focused on tasks such as function similarity or plagiarism
detection.

Because vulnerabilities are often confined to specific
instructions within an otherwise large function, function-level

techniques are prone to overfitting to the function semantics
rather learning the root cause of vulnerabilities. Furthermore,
even when function-level detection is successful, manual
effort is needed to locate the vulnerable instructions for
triage and patching.

We propose BinHunter, a novel graph-based representa-
tion of a binary program derived from the sliced program
dependence graph (PDG) that contains both data and control
dependencies. Our contributions are:
1) We introduce a novel graph representation derived from

the PDG, and which encapsulates both data and control
dependencies. We show how a graph convolutional net-
work (GCN) directly operating over this graph can learn
program properties by propagating information through
its edges.

2) We propose a slicing technique to extract subgraphs from
the PDG which not only facilitates bug detection, but
also helps in pinpointing its root cause.

3) We construct a dataset of CVEs by correlating the
database of Debian snapshots with the National Vulner-
ability Database (NVD). Each of these CVEs includes
information about the vulnerability type (“CWE”, or the
Common Weakness Enumeration), its precise location
(including function name, line numbers and affected
binary instructions), and versions of the vulnerable and
patched function (both at source and binary levels). To
the best of our knowledge, this is the first such publicly
available dataset.

4) We evaluate BinHunter on this dataset and compare it
to a set of four state-of-the-art baselines: Bin2Vec [1],
Asm2vec [10], Genius [12] and Jtrans [46]. We show that
our system consistently outperforms all four baselines,
both on our dataset and when applied to the Juliet test
suite [32].
The rest of this paper is organized as follows: We start

with a review of related work in Section 2. We then provide
the design overview of BinHunter in Section 3. We present
the implementation details and the results of our experimental
evaluation in Sections 4 and 5 respectively. We then briefly
discuss potential limitations of our technique in Section 6.

2. Related Work

Researchers have extensively studied software vulnera-
bility discovery using both static [1], [5], [10]–[12], [17],
[29], [30], [33], [45], [47], [48] and dynamic [14], [50],
[52] analysis. In this section, we review static analysis
for vulnerability detection in binaries; for a comprehensive
survey of deep learning based vulnerability detection at the
level of source code, we refer the reader to [7].

2.1. Deterministic Methods

Researchers have developed tools that employ signatures
and rules to identify vulnerabilities. Both VulMatch [29]
and BinXray [48] derive vulnerability signatures based
on differences between vulnerable and patched versions

of code. Similarly, UbSym [5] defines specifications to
identify potentially vulnerable segments of the program, and
then applies targeted symbolic execution to find memory
corruption vulnerabilities. Unsurprisingly, these methods are
sensitive to code modifications and compiler optimization
levels, and they require frequent reformulation of rules for
different vulnerabilities and compiler options.

2.2. Conventional Machine Learning Methods

Conventional machine learning methods rely on manually
extracting a set of features from binary programs. For
instance, Genius [12] introduced the Attributed Control Flow
Graph (ACFG), which extracts a statistical and structural
feature set from basic blocks. Other techniques, including
Gemini [47], BugGraph [20], and Vulseekerpro [15] have
also used ACFGs for their models.

Genius used spectral clustering [35] and a graph matching
algorithm on ACFGs and calculated the distance between a
new sample ACFG from the test set and cluster centroids. To
reduce the computational cost of Genius’s graph matching,
Gemini transformed each ACFG into a vector using the
Siamese architecture [6] and the structure2vec [9] model.
Meanwhile, Vulseekerpro outperformed Gemini by employ-
ing a two-step filtering algorithm. Vulseekerpro is a bug
search engine that eliminates functions dissimilar to the
target function and selects the top M similar functions. It
then reorders the selected functions to identify the top N
matches using dynamic analysis.

DiscovER [11] and VDiscover [17] both extract a set
of manually identified features from functions. For instance,
DiscovER extracts numerical and structural statistics, such
as the number of instructions and the size of local variables.
Similarly, VDiscover utilizes a combination of static and
dynamic properties—such as a set of calls to standard C
libraries—to classify functions as vulnerable or benign.

All of the methods mentioned in this section apply
machine learning algorithms to a set of manually extracted
features. Since manual feature extraction relies on human
effort and knowledge, it is time-intensive and imperfect. It
also requires new feature engineering as new vulnerabilities
arise. In contrast, our approach applies deep learning to
automatically craft important features during training. This
minimizes the human effort for model development and
makes retraining easy to capture new vulnerabilities.

2.3. Deep-Learning-Based Methods

Due to the outstanding performance of deep learning
in other domains, researchers have begun to explore its
applications to software vulnerability discovery. Two main
challenges when using deep learning-based approaches [10],
[30] are the choice of representation of the binary program,
and the granularity level at which training and testing are
performed. We review the history of deep learning based
methods from these two aspects, and provide a comparative
summary in Table 1.

TABLE 1: Comparison of deep learning based binary vul-
nerability detectors.

Method Localization Code Properties Model

Asm2vec [10] No Ctrl flow PV-DM
Bin2vec [1] No Ctrl flow GCN

BVdetector [45] Yes Ctrl and data deps word2vec
Zeek [42] No Data flow proc2vec
BinHunter Yes Ctrl and data deps GCN

2.3.1. Granularity of detection. Vulnerabilities typically
only affect a subset of a body of a given function in a binary.
Based on the granularity of representation, we can distinguish
coarse-grained and fine-grained detectors, depending on
whether they operate at the level of a whole function or
parts of each function. The majority of methods work at
function-level granularity, and therefore cannot pinpoint
the vulnerability location within the function. Examples
include Asm2vec [10], which converts binary functions into
vector representations using the PV-DM model [24], and
Bin2vec [1].

The lack of fine-grained localization limits their effec-
tiveness in downstream tasks such as triage and patching.
Moreover, real-world programs often consist of large func-
tions. In this situation, there is a risk that the classifier is
unable to precisely identify the aspects of functions related
to vulnerability and mistakenly learns parts of the function
semantics instead. We will see evidence of such over-fitting
in our ablation study in Section 5.4.

To achieve fine-grained vulnerability detection, re-
searchers leverage program slicing techniques. BVdetec-
tor [45] learns vulnerability patterns from program slices de-
rived from calls to API/library functions. Moreover, Zeek [42]
converts code fragments into vector inputs. Each code
fragment contains all sets of instructions that contribute
to the value of a variable. This way, when a vulnerability is
detected it can be localized to vicinity of specific API/library
calls (BVdetector) or to program segments required for a
variable calculation (Zeek). Nevertheless, the main shortcom-
ing in these methods is the chosen program representation
(word2vec and proc2vec respectively) cannot reliably capture
long-range dependencies among program elements.

2.3.2. Program representation. The second challenge with
deep-learning-based approaches is therefore the choice of
program representation. Most models represent the binary
program as a textual sequence of assembly instructions and
rely on sequence-based models such as recurrent neural
networks (RNNs) or long short-term memories (LSTMs) to
learn classifiers [2], [28].

BVdetector [45] and Schaad et al. [40] use word2vec [8]
to transform binary instructions into vectors and learn code
representation. In contrast, instruction2vec [25] embeds each
assembly instruction into a vector and uses TextCNN [21]
to learn both vulnerable and patched functions.

Asm2vec [10] uses the PV-DM [24] model. PV-DM [24]
is an extension of the word2vec model and can jointly learn
representations of words and paragraphs.

In contrast to purely sequence-based models such LSTMs
and BiLSTMs, structured models such as TreeLSTMs and
GCNs hold promise in using information derived from
program analyzers. For example, the graph embedding used
by Bin2vec captures control flow. In contrast, our present
model, BinHunter is able to capture both data and control
dependencies, and consequently significantly outperforms
Bin2vec in our experiments.

3. The Design of BinHunter

We describe our insight and innovations in Section 3.1.
BinHunter starts by constructing the program dependence
graph (PDG), as described in Section 3.2. It then slices the
PDG into smaller code segments, to facilitate localization
of vulnerabilities, as described in Section 3.3. An overview
of the workflow is shown in Figure 1.

3.1. Insight and Innovations

The central problem that we solve using BinHunter is to
identify and localize vulnerabilities within binary executables.

Insight #1: We need both control and data dependencies.
Vulnerabilities often arise because a user-controlled input
may drive program execution to an unintended path or it
may influence the value of some critical variable. Thus,
accurate detection of vulnerabilities requires both control
and data dependency between binary code statements. Our
first innovation resides in a novel graph that captures both
forms of information in our representation of binary code,
and using this information to learn the vulnerability classifier.
As we will show in our experiments, removing either form
of information reduces detection accuracy.

Insight #2: We need small code segments for learning.
Our goal is to produce suitable segments of binary code for
training and classification, so that we can precisely localize
a given vulnerability. Many vulnerabilities arise due to only
a small subset of the code within a function. Despite this,
the vulnerability may be spread across multiple basic blocks
in distant portions of the code. These two simultaneous
characteristics make vulnerability detection difficult, because
it is challenging to tune the detector to patterns specific to the
vulnerability, rather than to the large body of surrounding
code. Our second innovation is our introduction of PDG
slicing, which greatly improves localization of identified
vulnerabilities, when compared to use of whole functions for
machine learning. Traditionally, such localization requires a
significant manual effort that BinHunter is able to automate.
Furthermore, PDG slicing also helps to improve classifier
accuracy, as learning occurs over instructions specific to the
vulnerability rather than the surrounding code.

3.2. Obtaining the Program Dependence Graph

BinHunter operates on an intermediate representation (IR)
of the executable produced by a binary analysis engine. The

Testing Phase

Training Phase

 repository of
vulnerable

and patched
functions

Localization

Train
classifier

Function
Testset

Create a graph representation for each
created slice

Classify each
slice

Create Program
Dependence
Graph (PDG)

for each
function

Slice PDG
using the binary

debug
information

Create graph representation

Create PDG
Slice PDG
using call to

external
functions

Localization

Graph Construction

Graph Construction

Figure 1: An overview of the BinHunter workflow.

Figure 2: p-code statements corresponding to the assembly
instruction: 0x101265: push rbp.

IR specifies each assembly instruction in terms of its opcode,
operands and destination. These operands and destinations
may either be registers, constants, memory locations, or
intermediate values arising during disassembly. We show an
example of this IR in Figure 2.

For formal definitions of control and data dependency
graphs (CDG and DDG), we point the reader to the classic
reference [13]. Informally, we say that a basic block B1

in a function is post-dominated by another block B2 if
every path from B1 to the exit node passes through B2.
Subsequently, we say that the basic block B2 is control-
dependent on another basic block B1 if B1 is not post-
dominated by B2, but there is a path from B1 to B2 along
which every intermediate block B3 is post-dominated by
B2. In other words, the result of evaluating block B1 can
determine whether or not B2 is eventually executed. Binary
analysis engines typically either directly provide the CDG
or provide APIs to either determine post-domination, from
which we can manually construct the CDG.

We construct the DDG using APIs provided by the binary
analysis engine. There is a data dependence between two IR
statements s1 and s2 if s2 may use the value produced
as a result of executing s1. We note that determining
accurate CDGs and DDGs are intractable problems in binary
analysis, because binaries often lack complete information
about variable sizes, types and possible values, and all
this information influences control paths and data flows.
In this work we rely on imperfect versions of CDG and

DDG, supplied by binary analysis engines. Our evaluation
shows that these versions still perform well for vulnerability
detection and localization.

Finally, we observe that the CDG and the DDG are
produced at different levels of granularity, where the CDG
contains edges between basic blocks, and the DDG contains
dependencies between different variables in the IR state-
ments. See Figure 3 for an example of this difference in
granularity, where control dependencies are shown as edges
between basic blocks, and data dependencies are shown using
differently colored variable names.

3.3. PDG Slicing

Our goal is to extract subgraphs of the PDG that pre-
cisely capture individual vulnerabilities. Having too many
instructions in these code segments can cause the model
to learn irrelevant patterns from surrounding code, while
having too few instructions might fail to capture the data and
control dependencies necessary to trigger the root cause and
thereby jeopardize classification accuracy. We use different
techniques to slice the PDG at training and at test time.

During training, we assume that we have access to a
large, labeled dataset of vulnerabilities and the corresponding
source code for vulnerable and patched binaries. We construct
slices that precisely capture vulnerabilities as follows. We
start by consulting the DWARF debugging information for
the pair of binaries, and obtain a seed set V0 of vulnerable
instructions. We then expand this set of instructions to also
include all forward Vf and backward Vb data dependencies
within the function being analyzed, resulting in a subgraph
of the PDG that precisely captures the vulnerability.

For example, consider the following sequence of instruc-
tions:

L1: w := a + 5
L2: x := a + 1
L3: z := a + 2

Assembly
offsets

4

Debug Line Section in Dwarf

0x1279

Souorce Line
Numer

0x101279:(register, 0x200, 1) INT_LESS (register, 0x20, 8), (const, 0x10, 8)
0x101279:(register, 0x20b, 1) INT_SBORROW (register, 0x20, 8), (const, 0x10, 8)
0x101279:(register, 0x20, 8) INT_SUB (register, 0x20, 8), (const, 0x10, 8)
0x101279:(register, 0x207, 1) INT_SLESS (register, 0x20, 8), (const, 0x0, 8)
0x101279:(register, 0x206, 1) INT_EQUAL (register, 0x20, 8), (const, 0x0, 8)
0x101279:(unique, 0x12c00, 8) INT_AND (register, 0x20, 8), (const, 0xff, 8)
0x101279:(unique, 0x12c80, 1) POPCOUNT (unique, 0x12c00, 8)
0x101279:(unique, 0x12d00, 1) INT_AND (unique, 0x12c80, 1), (const, 0x1, 1)
0x101279:(register, 0x202, 1) INT_EQUAL (unique, 0x12d00, 1), (const, 0x0, 1)
0x101280: --- CALL (ram, 0x101030, 8) , (register, 0x20, 8)

0x101275:(unique, 0xe780, 8) COPY (register, 0x28, 8)
0x101275:(register, 0x20, 8) INT_SUB (register, 0x20, 8), (const, 0x8, 8)
0x101275: --- STORE (const, 0x1b1, 4), (register, 0x20, 8), (unique, 0xe780, 8)
0x101275:(register, 0x20a, 1) COPY (const, 0x0, 1)
0x101276: (register, 0x28, 8) copy (register,0x20,8)

0x101277: --- CALL (ram, 0x101030, 8) , (register, 0x0, 8)

0x101285:(unique, 0x3100, 8) INT_ADD (register, 0x28, 8), (const, 0xff8, 8)
0x101285:(register, 0x0, 8) COPY (unique, 0x3100, 8)
0x101285:(unique, 0x3100, 8) INT_ADD (register, 0x28, 8), (const, 0x0, 8)
0x10127d:(unique, 0xbe00, 8) COPY (const, 0x0, 8)
0x10127d: --- STORE (const, 0x1b1, 4), (unique, 0x3100, 8), (unique, 0xbe00, 8)
0X10127d: --- CBRANCH (ram, 0x1012a4, 1) , (unique, 0xc680, 1)

0x101289:(register, 0x38, 8) COPY (register, 0x0, 8)
0x101290: --- CALL (ram, 0x101130, 8)

0x10128c:(register, 0x20, 8) INT_SUB (register, 0x20, 8), (const, 0x8, 8)
0x10128c: --- STORE (const, 0x1b1, 4), (register, 0x20, 8), (const, 0x101291, 8)
0x10128c: --- CALL (ram, 0x1012e4, 8) , (register,0x28,8)

Selected
slices in

the
training
phase One of the

created
slices in the

testset

Starting point of
slicing

Figure 3: Approaches to slice the PDG at training and test time. Each basic block consists of a sequence of P-code
operations, and the edges between basic blocks indicate control dependence edges. We illustrate data dependencies using
differently colored varnodes (registers, temporaries, etc.). For instance (register, 0x20, 8) is used in instructions 0x101275,
0x101276, 0x101279, 0x101280, 0x10128c showing the data dependency between these instructions. Training-time slices are
extracted from ground truth knowledge of the vulnerability and by performing forward and backward reachability in the
data dependency graph. At test time, we start from calls to external functions and similarly perform forward and backward
reachability. Four such slices will be extracted from this PDG, starting from assembly offsets 0x1277, 0x1280, 0x128c and
0x1290 respectively. Only the slice starting from 0x128c is shown.

L4: y := a + 5
L5: y := w + 3
L6: x := y + z // <--Modified in patch
L7: c := x + 3
L8: d := c + w

One may imagine each of these instructions as corresponding
to an IR statement, such as:

(register, 0x20, 8)
INT_ADD (register, 0x28, 8),

(register, 0x30, 8)

Furthermore, say that the assignment L6: x := y + z
was modified in the patch. In this case, V0 = {L6}, and
Vb = {L3,L5}. Similarly, Vf is the set of IR statements
which are data-dependent on some statement in V0. In our
example, Vf = {L7}. V0∪Vf ∪Vb may be thought of as the
set of instructions relevant to the vulnerability. At the end
of the training run, we define n to be the average number of
assembly instructions contained in V0∪Vf ∪Vb. We visualize
this process in Figure 3.

On the other hand, this approach would not work at
test time, because we would not have a priori knowledge
of vulnerability locations and stripped binaries would not
have any external information for slicing. We instead rely
on the observation previously made by BVDetector [45] that
snippets of vulnerable code frequently include calls to libc
and other external libraries. We start separately from each of

these external library calls in the test program and traverse
the DDG in both forward and backward directions. We use
the average number of instructions n previously computed
from the training data to determine the size of each subgraph
to be extracted at test time. Formally, for each external
function call instruction c in the function body F , we define
the seed set of vulnerable instructions as S0 = {c}. Next, by
following the DDG in the forward direction, we construct
the set Sf of instructions, which are reachable from one of
the arguments of c and, by walking in the reverse direction,
recover the set Sb of instructions from which one can reach
some argument of c. We truncate both Sf and Sb to have no
more than n/2 assembly instructions each (so that Sf ∪ Sb

collectively contains no more than n assembly instructions).
We submit each of the truncated slices S0 ∪ Sf ∪ Sb thus
obtained to the classifier. As we show in Section 5.6, this
slicing heuristic is very effective in identifying candidate
instructions for subsequent classification using the GCN.

In contrast to prior work which also slices the pro-
gram [26], [27], [45], the main novelty of our approach
is in: (a) using the library call heuristic only at test time,
and (b) additionally using data dependencies to precisely
target instructions for inclusion in the extracted subgraphs.
This allows for accurate production of PDG slices at training
time and thus improves the accuracy of our model.

3.4. The Graphical Program Representation

After obtaining the sliced PDGs from the functions being
classified, we use graph convolutional networks (GCNs) [22]
to train classifiers that can distinguish between vulnerable
and bug-free programs. GCNs operate over graphs that can
be described as a pair consisting of an adjacency matrix and
an assignment of feature vectors to each vertex of the graph.
The main challenge that arises in our application is that,
depending on the granularity at which the PDG is constructed,
each of its nodes will itself have a complex structure. For
example, each basic block consists of a sequence of binary
instructions, and each instruction in turn consists of an
operator applied to several operands. Traditionally, in order to
encode these structures into a form suitable for classification
and learning, researchers have relied on a range of hand-
crafted features. For example, the attributed control flow
graphs (ACFGs) of Genius and Gemini involve associating
each basic block with a set of manually derived statistics,
such as the number of instructions, number of calls, or
number of arithmetic instructions that it contains.

In contrast, for vulnerability detection in source code,
systems such as Devign [51] rely on an abstract-syntax-
tree-like (AST-like) representation augmented with control
dependence and data flow edges [49]. Inspired by these
techniques, we use the intermediate representation of
binary code to construct the abstract syntax tree (AST) for
each basic block in the program slice. Each node in this
AST corresponds to either an operation (e.g., INT_ADD,
COPY, LOAD, etc.) or a var-node. Consequently, there is
an edge from the operation performed in the IR statement
to the target var-node, and edges from each var-node
to IR statements which subsequently use its value. For
example, the IR statement (register, 0x20, 8)
INT_ADD (register, 0x28, 8), (register,
0x30, 8) would have edges from (register, 0x28,
8) and (register, 0x30, 8) to INT_ADD, and from
INT_ADD to (register, 0x20, 8) respectively.

Recall now the granularity difference between data and
control flow information that we previously discussed in
Section 3.2. Specifically, DDG edges connect operands used
in IR statements, while CDG edges connect basic blocks.
Our approach to reconciling this discrepancy is to annotate
each node in the DDG with some scalar representation of the
control dependency information. Motivated by the idea that
each basic block in the CDG between the start of the function
and the current node can potentially determine whether or
not the current node will be executed, we posit that the
number of such blocks provides a good scalar encoding of
the control dependence information.

We perform a breadth-first search (BFS) over the control
dependence graph to recover the level l of each node v,
i.e., its distance from the starting block of the function.
We finally obtain a graphical representation of the selected
slice by embedding this control dependency level into each
node of the AST, thus resulting in the compound node vl, as
illustrated in Figure 4. Our ablation study in Table 3 indicates

that this data is unambiguously helpful in vulnerability
detection across all CWE categories.

3.5. Training the Classifier

Feature extraction. For each function slice under consid-
eration (either in training or in test), we construct a graph
with a symmetric adjacency matrix, which describes data
dependencies from the AST. To extract the features for each
node, we consider the set of all nodes across all AST graphs
constructed during training. Recall that each of these nodes
has a label of the form vl, where v is an element of the
original AST (either an IR opcode or a variable or a constant),
and l ∈ {0, 1, 2, . . . } is its control dependency level. We use
this global catalog of node labels to develop a one-hot feature
encoding for each node in the graph being constructed.

Model setup. Our classifier uses the Kipf GCN architec-
ture [22]. We use the reference implementation, which we
have modified to run on TensorFlow 2.8.0. Our model
consists of three layers with 128, 128 and 64 dimensions
respectively. The learning rate and batch size are set of
0.001 and 64 respectively. In evaluation, depending on the
CWE type, we select the number of epochs from the set
{20, 30, 50} by optimizing over the validation set.

4. Implementation Details

We implemented BinHunter using Ghidra [16] to lift
the binary instructions into a language- and architecture-
independent intermediate representation called the P-
code [34]. Next, we use the Ghidra APIs to recover the
control dependence graph (CDG), and data dependence graph
(DDG) for the selected functions in the binary. We have
shown an example of the combined program dependence
graph (PDG) in Figure 3.

Our next step is to apply PDG-slicing. In our evaluation
we train the BinHunter classifier using programs from the
Juliet dataset. The training programs use preprocessor macros
to switch between buggy and bug-free versions of the code,
and also include detailed comments regarding the location
of the vulnerability. We map the implicated source lines into
binary offsets using DWARF debug entries, thereby providing
a very accurate seed set V0 of vulnerable instructions for
training.

Comments on the running time. In terms of asymptotic
complexity: Classical algorithms can construct the PDG
in time O(N2), where N is the number of IR statements
in the function. The subgraph slicing heuristic performs a
graph traversal from each call node, thus contributing to a
total running time of O(kN), where k is the number of call
statements within the function body. The final Kipf classifier
runs in time linear in the number of edges in the graph being
evaluated. In terms of wall-clock running time: Obtaining
the PDG from Ghidra required an average of 72.61 seconds
per function drawn from the real-world dataset, while the
subsequent slicing and model evaluation was completed in
an average of 3.59 seconds per function.

control dependency
level 1

control dependency
level 2

control dependency
level 3

control dependency
level 4

Reg_
0x28_1

COPY0_1

Unique_
0xe780_1

INT_SUB0
_1

Reg_0x20
_1

Const_0_1

Const_1_1

STORE0_1
COPY2_1

Const_2_2

INT_LESS0_2

Reg_0x200_2

Reg_0x20b_2
INT_

SBORROW0_2

Const_3
_2

Const_4
_2

INT_
SUB1_2

INT_SLESS0
_2

unique_
0x12d00

_2

INT_EQUAL2
_2

INT_AND0
_2

POPCOUNT0_2

INT_
AND1
_2

INT_EQUAL1
_2

CALL_2

Const_5
_2

Const_6
_2

Reg_0x207
_2

Reg_0x206
_2

Unique_
0x12c00

_2

Unique_
0x12c80

_2

Const_7
_2

Reg_0x202
_2

Const_8
_2

Adding control
dependency

level information
in all nodes of

the graph

Figure 4: Combining the abstract syntax tree (AST) with the data dependence edges and embedding the control dependence
levels to obtain a graphical representation of the function slice.

5. Experimental Results

Our implementation of BinHunter consists of approx-
imately 3,700 lines of Python 3 code and 400 lines of
Bash script, and is divided into two principal components.
The first component interfaces with Ghidra to extract PDGs
and operates using the Ghidrathon [31] Jython-to-Python
bridge. We use the pyelftools library to parse the
DWARF structure, to obtain binary offsets. We performed
all experiments on a Linux server with 256 GB RAM and
an Intel Xeon E5-1650 CPU with 12 cores. Our evaluation
focused on answering the following research questions:
RQ1. How effective is BinHunter at detecting vulnerabilities

in both the Juliet test suite and in real-world binary
programs?

RQ2. How do various model features, such as slicing,
inclusion of data dependency and control dependency
features, influence the overall performance of the
model?

RQ3. Can BinHunter effectively localize vulnerabilities in
functions?

RQ4. Why is slicing based on calls to libc effective for
detecting vulnerabilities?

Artifact availability. The BinHunter source code and our
evaluation dataset may be downloaded from https://github.
com/SimaArasteh/binhuntertool/tree/main.

5.1. Benchmarks

We evaluate BinHunter using the Juliet test suite [32] and
using a corpus of historically vulnerable Debian packages.

The Juliet test suite. The Juliet Test Suite is a balanced, la-
beled dataset that consists of vulnerable and patched versions
of C, C++, and Java programs [32]. These programs contain
examples of 118 different CWEs, including various types of
buffer overflows and integer overflows. We focus on samples
of C and C++ programs, for which the distribution provides
preprocessor macros to switch between the vulnerable and
patched versions of the program.

We split the Juliet dataset for each CWE into training,
testing, and validation sets at the ratio 70 : 15 : 15. We
subsequently focus on CWEs for which there are at least
100 samples in the test set, and where the patch involves
changes to a single function. This yields 17 CWEs and
24,725 binaries. We show the aggregate statistics for the
subset of the Juliet test suite, which we use, in Table 2.

Corpus of historical CVEs (Common Vulnerabilities and
Exposures). To measure the effectiveness of BinHunter in
identifying vulnerabilities in real-world binary programs, we
crawled the Debian snapshot archive [38]. We identified
packages containing security patches that fix specific CVEs,
and manually localized the functions and lines of code
being changed in each case. We correlated this information
with the NVD vulnerability database [37] to determine
the implicated CWE. Through this process, we collected
a corpus of 24 CVEs across 15 Debian packages, spanning
the time period 2015–2022. We built each of these packages
using debootstrap (to obtain the historically appropriate
version of Debian) and by using the Debian package mainte-
nance tool quilt (to apply or withhold the specific patch
that fixes the CVE). We thus obtained a balanced dataset of
real-world binaries in which specific functions were known

to have or not a given vulnerability. We show the list of
CVEs for real-world evaluation in Table 4.

To the best of our knowledge, this is the first such dataset
of CVEs, which includes weakness type, affected locations
(both at the source and binary levels), and with vulnerable
and patched versions of binaries.

TABLE 2: Chosen vulnerability categories from the Juliet
test suite. A preprocessor macro provides vulnerable and
non-vulnerable versions of each program. We compiled
programs with and without this macro, and divided the
resulting functions into training, testing, and validation sets,
whose respective sizes we present below.

CWE Training Testing Validation

CWE-121 1987 426 426
CWE-122 2195 471 470
CWE-124 659 142 141
CWE-126 499 107 107
CWE-127 659 142 141
CWE-190 2216 476 475
CWE-191 1639 352 351
CWE-369 622 134 133
CWE-400 478 103 102
CWE-401 912 196 196
CWE-415 492 106 106
CWE-416 492 106 106
CWE-476 464 100 100
CWE-590 1176 252 252
CWE-680 478 103 102
CWE-690 536 115 115
CWE-762 1796 386 385

5.2. Baselines

We compare BinHunter to four existing models which
aim to detect vulnerabilities in binary programs: Bin2vec [1],
Asm2vec [10], Genius [12] and Jtrans [46]. We selected
these baselines for the vulnerability discovery task as they
each employ comparable methodologies, enabling a direct
and meaningful comparison of their respective efficiencies
and accuracies in this context.

The first baseline, Bin2vec, is a binary classifier which
must be trained separately for each class of vulnerabilities. In
contrast, the remaining three baselines, Asm2vec, Genius and
Jtrans are primarily binary search tools. Notably, the original
evaluations of these tools in the respective publications [10],
[12], [46] also include measurements of their effectiveness
for vulnerability discovery in binaries. These three baselines
apply different techniques: Bin2vec applies GCNs to the
inter-procedural CFG extracted from the binary; Asm2vec
leverages an NLP model to train vulnerabilities at the granu-
larity of individual functions; Genius has a set of hardcoded
features which are manually extracted from the CFG, and
passed through a clustering algorithm to identify vulnerable
functions; and Jtrans combines a token embedding derived
from the assembly instructions with a jump embedding
describing control flow information.

We now discuss the evaluation and setup of each system.
Note that we use the same partition of functions into training,
testing, and validation sets for BinHunter and the baselines.

Bin2vec. We use the same settings (number of GCN layers
and training parameters: epochs, learning rate, and batch size)
as used in the original Bin2vec evaluation, and separately
learn a classifier for each class of vulnerabilities.

Asm2vec. We use the Asm2vec implementation available
from [23]. Note that Asm2vec is primarily a bug search
engine. We use the system to detect vulnerabilities as follows:
we supply each test function to the search engine to search
for similar functions in the training repository. Recall that the
training functions consist of vulnerable and patched programs
from the Juliet test suite. We then classify the test function as
being vulnerable if at least half of the top 15 search results
were vulnerable. We also note that this setup is analogous
to the setup used by the Asm2vec developers in their own
evaluation of its effectiveness in vulnerability detection (See
Section 5.4 of [10].

Before evaluating the performance of Asm2vec on the
Juliet test suite, we use the validation set to identify the best
values of the model parameters. This includes the dimension-
ality of the PV-DM neural network and the learning rate. We
evaluate the model parameters by performing a grid search
over the sets {50, 100, 150, 200} and {0.05, 0.025, 0.01}
respectively, and choose the setting which performs the
best. On the other hand, the limited number of Debian
packages precludes the possibility of a validation loop. When
running the Asm2vec baseline on this dataset, we therefore
use all combinations of parameter values, and report the best
classification results ever achieved.

Genius. We use the Genius implementation available
from [44]. The system uses the IDA Pro disassembler to
extract CFGs from the binary, and uses them to construct a
subsequent data structure called an attributed CFG (ACFG).
We updated the Genius implementation to support the latest
version of IDA Pro.

Note that Genius is also a bug search engine similar to
Asm2vec, and so we employ a similar technique to use it
for vulnerability discovery, i.e., searching through the Juliet
repository for functions similar to the sample being classified,
and declaring it to be potentially vulnerable if at least half of
the top 50 search results are vulnerable. Before measuring the
classification performance of Genius, we use the validation
set to tune the hyper-parameters (i.e., code-book size, chosen
from the range {16, 32, 64, 128}).

Jtrans. In their original evaluation, the Jtrans developers
measured the ability of their system to detect vulnerabilities
across versions of a function compiled with different opti-
mization levels. They utilized a corpus of vulnerable binaries
compiled with different compilers, compilation flags, and
optimization levels. In this corpus, they grouped different
versions of the same function, and trained their algorithm
to mark functions within the same group as similar, and
functions in different groups as dissimilar.

In our setting, on the other hand, we only had one vulnera-
ble and patched version of each binary. While adapting Jtrans
to our setting, (for each vulnerability category) we instead

created just two groups of functions, containing vulnerable
and patched versions respectively. The smaller number of
groups caused some training-time complications with the
default Jtrans implementation, which we resolved through
minor modifications of their source code.

Finally, as with Asm2vec and Genius: At test time, we
requested a ranked list of functions most similar to the
function under test, and based our prediction on whether there
were more vulnerable or non-vulnerable functions within the
top 10 returned results.

5.3. RQ1: Classification Performance

In order to measure their effectiveness in finding vul-
nerabilities, for each CWE category, we trained all systems
on the corresponding training slices of the Juliet test suite.
We chose the respective hyper-parameters by measuring the
effectiveness of the learned classifier on the validation sets
(this includes the number of training epochs for BinHunter,
drawn from the range {20, 30, 50}.

Note that we use DWARF debug information to precisely
identify the vulnerable and patched slices during training. We
also measured the average number of vulnerable instructions
in the training programs to determine the optimal slice size
for each CWE, which we report in Table 5.

During testing, we use calls to libc as a heuristic to
preselect potential locations of vulnerabilities, as discussed
in Section 3.3. Depending on the number of these calls in
the function being classified, we extract a varying number
of slices from each test program. We identify buggy slices
by examining their overlap with the known binary offsets of
the vulnerability in question. These offsets were determined
using comments in the source code of the Juliet programs,
and by identifying program locations that were modified by
patches applied to the historical vulnerabilities for real-world
dataset. We then determined whether the classifier correctly
classified the slice, and summarized the results for each
function by declaring it to be correctly classified exactly
when all of its constituent slices were correctly classified.
We repeated this training-testing process 5 times by shuffling
the data in each iteration, and measured the average test
classification performance. We use two evaluation metrics—
true positive rate and false positive rate—to measure the
performance of BinHunter on both the Juliet test suite and
the historical CVEs. We report these numbers in Tables 3
and 4 respectively.

BinHunter massively outperforms Asm2vec, Genius and
Jtrans across all CWE categories in the Juliet dataset. While
its performance is closer to Bin2vec, it is nevertheless the
best classifier on all but three CWEs (CWE-122, CWE-190,
and CWE-590 respectively). Except for CWE-590, BinHunter
generally outperforms Bin2vec with a lower false positive
rate. On average, BinHunter outperforms the baselines by
6.77%, 26.53%, 24.65% and 41.59% in true positive rates
and exhibits lower false positive rates by 19%, 47.64%,
31.47% and 39.82% respectively.

We remark that Bin2vec is primarily based on analyzing
the CFG of the program. An investigation of the Juliet

programs for CWE-126, CWE-369, CWE-400, and CWE-
690 revealed that samples misclassified by Bin2vec were
primarily distinguished by their patterns of data flow (as
indicated by metadata in the samples and Appendix C of
the Juliet manual [32]). This highlights the importance of
considering both the control and the data dependencies, as
explained in Section 3.4.

We also recall that each vulnerable sample in the Juliet
dataset is accompanied by a patched version: because they
differ in only a small number of ways, the two versions are
likely to be represented by nearby vectors, thereby resulting
in their poor classification performance.

When applied to the corpus of historical vulnerabilities,
we were able to retrieve the target function using the Ghidra
API for 21 of the 24 CVEs.1 We further classified each
function’s binary using BinHunter, and using our baselines.
We report classification results in Table 4. Note that Bin-
Hunter is successful for 17 of the CVEs, while Bin2vec only
successfully classifies 2 functions, and Asm2vec, Genius
and Jtrans are uniformly unsuccessful. The data presented
in Table 4 indicates that BinHunter does not successfully
identify vulnerable slices associated with CVE-2019-12109.
Additionally, for CVE-2021-37529, CVE-2022-31291, and
CVE-2017-7395, it incorrectly labels some or all non-
vulnerable slices as vulnerable. The vulnerable functions
of CVEs in Table 4 are quite large. The reliance of Bin2vec,
Asm2vec, Genius and Jtrans on function representations
affects their performance on real-world binaries, while
BinHunter relies on a finer granularity level, which improves
its accuracy.

5.4. RQ2: Ablation Study

Next, we conduct three experiments to study the impact of
different features on the ultimate performance of BinHunter.
First, we remove control dependency information from the
model, and evaluate an alternative model that only operates
on the sliced data dependency graph. We call this model BH\
{CDG}. We then inspect the impact of slicing on the ultimate
accuracy of vulnerability detection using the model BH \
{Slicing}, which learns and performs classification over the
entire functions instead of function slices. Finally, we study
the impact of the data dependency edges on classification
performance. Recall that nodes in the overall BinHunter
graph are connected through data dependency edges, and
information about control dependencies is merely embedded
into each node in the graph. This makes setup of this final
ablation study somewhat challenging. Inspired by the graph
representation in Bin2vec, we construct the AST of each
basic block, augmented with source and sink nodes at its
start and end. We add edges between these start and end
vertices according to the control dependency graph. We
employ a slicing technique similar to the main model, and
denote this derived model as BH \ {DDG}. The accuracy of
these models may be found in the corresponding columns
of Tables 3 and 4.

1. The Ghidra API fails to retrieve the vulnerable function for three
CVEs: CVE-2016-5152, CVE-2016-7163, and CVE-2018-5785.

TABLE 3: Evaluation of BinHunter and the baseline systems on the Juliet dataset. Note that TPR and FPR shows true
positive and false positive rates respectively.

CWE-ID # Slices BinHunter BH \ {CDG} BH \ {DDG} BH \ {Slicing} Bin2vec Asm2vec Genius jTrans
of BinHunter TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

CWE-121 1329 0.83 0.07 0.81 0.29 0.75 0.30 0.85 0.15 0.82 0.49 0.52 0.43 0.67 0.59 0.38 0.70
CWE-122 2844 0.81 0.09 0.72 0.28 0.74 0.32 0.80 0.08 0.85 0.29 0.54 0.61 0.50 0.21 0.40 0.59
CWE-124 738 0.84 0.04 0.83 0.08 0.83 0.13 0.82 0.10 0.66 0.30 0.78 0.22 0.55 0.61 0.27 0.40
CWE-126 699 0.86 0.07 0.83 0.36 0.77 0.46 0.80 0.12 0.63 0.23 0.69 0.37 0.42 0.43 0.37 0.55
CWE-127 838 0.83 0.06 0.81 0.20 0.79 0.45 0.81 0.17 0.78 0.21 0.72 0.56 0.75 0.34 0.31 0.47
CWE-190 2851 0.81 0.09 0.83 0.17 0.84 0.23 0.83 0.12 0.85 0.25 0.57 0.67 0.52 0.47 0.45 0.65
CWE-191 2190 0.88 0.10 0.80 0.12 0.84 0.2 0.81 0.10 0.81 0.23 0.63 0.42 0.49 0.32 0.40 0.77
CWE-369 873 0.88 0.08 0.82 0.15 0.81 0.26 0.87 0.27 0.78 0.31 0.58 0.57 0.67 0.31 0.52 0.65
CWE-400 864 0.91 0.05 0.80 0.18 0.79 0.42 0.89 0.15 0.76 0.31 0.42 0.73 0.70 0.13 0.31 0.44
CWE-401 661 0.80 0.06 0.82 0.16 0.77 0.16 0.81 0.17 0.73 0.21 0.58 0.63 0.65 0.23 0.24 0.58
CWE-415 356 0.82 0.06 0.81 0.06 0.79 0.08 0.78 0.20 0.80 0.1 0.62 0.76 0.61 0.55 0.56 0.3
CWE-416 356 0.82 0.05 0.72 0.17 0.70 0.23 0.82 0.26 0.76 0.24 0.33 0.80 0.59 0.21 0.71 0.46
CWE-476 156 0.95 0.12 0.86 0.25 0.80 0.36 0.83 0.14 0.80 0.33 0.55 0.46 0.53 0.42 0.72 0.13
CWE-590 866 0.79 0.04 0.82 0.01 0.83 0.19 0.86 0.10 0.80 0.01 0.68 0.51 0.61 0.24 0.57 0.28
CWE-680 441 0.88 0.03 0.87 0.05 0.85 0.17 0.83 0.15 0.82 0.18 0.52 0.43 0.68 0.48 0.38 0.17
CWE-690 328 0.83 0.05 0.80 0.02 0.80 0.12 0.82 0.09 0.79 0.29 0.47 0.51 0.59 0.56 0.43 0.44
CWE-762 1220 0.80 0.03 0.77 0.08 0.67 0.03 0.80 0.23 0.75 0.34 0.63 0.51 0.62 0.34 0.25 0.28

TABLE 4: Classification performance on the corpus of historical vulnerabilities over 5 random runs. We also report the
affected package and implicated CWE. # Slices indicates the total number of slices created by BinHunter. Note that Bin2vec
and Asm2vec fail to execute on CVE-2021-32280, CVE-2018-20190 and CVE-2021-32280 because of a crash in angr.
Bin2vec also crashes when running on CVE-2019-14818.

CVE Debian CWE-ID BinHunter BH \ {CDG} BH \ {DDG} BH \ {Slicing} Bin2vec Asm2vec Genius jTrans
Package # Slices TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

CVE-2015-8871 openjpeg2 CWE-416 11 1 0 0.4 0.4 0 0 0.2 0 0 0 0 0 0 0 0 0
CVE-2019-11471 libheif CWE-416 24 1 0 0.6 0 0 0 0 0 - - - - 0 0 0 1
CVE-2020-1983 libslirp CWE-416 22 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0

CVE-2020-27841 openjpeg2 CWE-122 13 1 0 0.4 0 0 0 0 0 0.6 0 0 0 0 0 0 0
CVE-2022-1253 libde265 CWE-122 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CVE-2017-7458 ntopng CWE-476 5 1 0 0.6 0 0 0 1 1 0 0 0 0 0 1 0 0

CVE-2018-20349 r-cran-igraph CWE-476 19 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
CVE-2018-13441 nagios4 CWE-476 3 1 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0
CVE-2018-20190 libsass CWE-476 4 1 0 0 0 0 0 0 0 - - - - 0 0 0 0
CVE-2019-18388 virglrenderer CWE-476 17 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
CVE-2019-12110 miniupnpd CWE-476 22 1 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0
CVE-2019-12109 miniupnpd CWE-476 7 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0
CVE-2019-12108 miniupnpd CWE-476 4 1 0 0 0 0 0 0 0.2 0 0.2 0 0 0 0 0 1
CVE-2021-32280 fig2dev CWE-476 9 1 0 0 0 0 0 0 0 - - - - 0 1 0 0
CVE-2020-8003 virglrenderer CWE-415 16 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0

CVE-2021-37529 fig2dev CWE-415 5 0 0.33 0 0 0 0 1 1 1 0 0 0 0 1 0 0
CVE-2022-31291 dlt-daemon CWE-415 9 0 0.4 0 0 0 0 0 0 1 0 0 0 0 1 0 0
CVE-2019-14818 dpdk CWE-401 14 1 0 0 0.5 0 0 0 0 - - 0 0 0 0 0 0
CVE-2017-7395 tigervnc CWE-190 8 0 1 0.66 0 1 1 0 0 0 0 0 0 0 0 0 0

CVE-2020-10722 dpdk CWE-190 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
CVE-2022-48468 libsignal-protocol-c CWE-190 20 1 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0

The approach without slicing – BH \ {Slicing} – has
97.8% of the TPR and 239% of the FPR of the final model,
when applied to the Juliet test suite. On the other hand,
its average TPR over the Debian packages drops to only
18.8% of the final model. This observation highlights the
importance of slicing the PDG when detecting vulnerabilities
in large real-world functions.

The importance of slicing is further highlighted in the
case of BH\{CDG}. Observe that despite performing slightly
worse than BH \ {Slicing} over the Juliet test suite, it has
much greater accuracy in the case of Debian vulnerabilities,
with 52% higher TPR and 62.5% lower TPR than the model
which classified entire functions, BH \ {Slicing}.

Finally, the model BH\{DDG} performs poorly on both
the Juliet test suite and Debian packages, highlighting the
critical role of data dependency information in discovering
vulnerabilities in these environments.

5.5. RQ3: Effectiveness in Localization

Next, we attempted to measure how effective BinHunter
is in flagging small slices of the binary as being potentially
vulnerable. For each program, we considered the set of
potentially vulnerable instructions returned by BinHunter
and compared them to ground truth extracted from the patch
and code comments in the dataset. We measured the fractional
overlap between these sets, defined as the values |V ∩S|/|V |
and |V ∩ S|/|S|, where V and S are the ground truth set
of vulnerable instructions and the program slice flagged by
BinHunter respectively. We present this data in Table 5 for
Juliet test suite and Table 6 for the Debian packages.

Observe that the average values for both quantities exceed
80% and 70% respectively for the Juliet test suite, indicating
that the slices produced are highly correlated with the ground
truth. Also observe that the slices extracted by BinHunter
contain 30 instructions on average, indicating that they are
potentially small enough for subsequent manual analysis.

Over the Debian packages, these measures of localization
effectiveness exceed 80% and 65% respectively. Observe

TABLE 5: Average number of vulnerable instructions in
the training data, and the measured overlap (in %) between
flagged instructions and the ground truth during testing on
the Juliet test suite dataset. Here V and S denote the set of
vulnerable instructions (i.e., the ground truth) and the set of
instructions returned by BinHunter respectively.

CWE-ID Avg Instructions |V ∩ S|/|V | |V ∩ S|/|S|

CWE-121 26 89.49 80.71
CWE-122 26 90.21 76.25
CWE-124 33 90.41 91.17
CWE-126 34 95.23 62.04
CWE-127 30 92.52 63.62
CWE-190 27 80.56 82.31
CWE-191 27 92.32 85.73
CWE-369 29 90.41 80.23
CWE-400 52 88.80 87.86
CWE-401 52 72.44 62.83
CWE-415 15 95.90 90.50
CWE-416 14 85.30 80.70
CWE-476 29 89.33 81.83
CWE-590 17 87.27 92.60
CWE-680 53 90.50 60.51
CWE-690 17 93.39 65.92
CWE-762 16 93.95 71.76

TABLE 6: Measurement of localization effectiveness over
the Debian packages.

CVE-ID |V ∩ S|/|V | |V ∩ S|/|S|

CVE-2015-8871 71.42 53.27
CVE-2019-11471 70.29 65.14
CVE-2020-1983 81 63
CVE-2020-27841 87 57.12
CVE-2022-1253 88 61.17
CVE-2017-7458 75 70.20
CVE-2018-20349 82 57.20
CVE-2018-13441 85.21 71.2
CVE-2018-20190 89.41 70.32
CVE-2019-18388 70 54
CVE-2019-12110 76.12 63.24
CVE-2019-12109 78 63.5
CVE-2019-12108 87.25 57.5
CVE-2021-32280 85.29 64.07
CVE-2020-8003 81.32 71.21
CVE-2021-37529 75 55.55
CVE-2022-31291 85.71 66.65
CVE-2019-14818 83.33 61.2
CVE-2017-7395 75.07 57.14
CVE-2020-10722 78.56 74.30
CVE-2022-48468 84.44 64.27

that although these numbers are very large, the value of
|V ∩S|/|S| is smaller than in the Juliet dataset. We speculate
that this is because of the complexity of data dependencies
in real world programs, which forces the algorithm to create
large slices. Nevertheless, these slices remain sufficiently
small to reduce the effort required for subsequent manual
analysis.

5.6. RQ4: Effectiveness of the Slicing Heuristic

As described in Section 3.3, we use calls to external
functions as the locations from which to extract program

CWE-1
21

CWE-1
22

CWE-1
24

CWE-1
26

CWE-1
27

CWE-1
90

CWE-1
91

CWE-3
69

CWE-4
00

CWE-4
01

CWE-4
15

CWE-4
16

CWE-4
76

CWE-5
90

CWE-6
80

CWE-6
90

CWE-7
62

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

train test

Figure 5: Fraction of vulnerable slices in the Juliet dataset
that contain calls to external functions.

slices for subsequent classification by BinHunter. In order
to assess the effectiveness of this heuristic, we performed an
analysis of the training and testing fragments of the Juliet
dataset, and counted the functions whose vulnerable slices
contain such external calls. We present this data in Figure 5.
The first column shows the measurement over the training
set while the second column presents measurements over
the testing set.

Note that in the specific Juliet programs, these calls
usually target functions in libc. Observe that the heuristic
consistently captures a large fraction of the vulnerable slices:
the heuristic always captures at least 80% of vulnerable slices,
and for 6 of the 17 CWEs in question, the heuristic manages
to capture all vulnerable slices. The CWEs for which the
method has the smallest recall, i.e., CWE-121, CWE-190,
CWE-191, and CWE-369, correspond to stack-based buffer
overflows, integer overflow and underflows, and divide-by-
zero respectively. These vulnerabilities might conceivably be
exploited without calls to external libraries, thus potentially
explaining the lower recall of our slicing heuristic in these
cases.

6. Challenges and Limitations

We now discuss some limitations of our classification
technique, which we plan to address as part of future research.

First, we restricted our focus to intra-procedural vulnera-
bilities. This was primarily due to challenges in recovering
long-range data dependencies. On the other hand, binary
analysis backends such as angr [43] provide some support
for also obtaining inter-procedural data dependencies. We
plan to investigate the feasibility of using this information
for vulnerability detection as part of future work.

Next, BinHunter would be unable to distinguish between
the vulnerable and patched versions of the program if they
only differ in the values of constants, such as lengths of
arrays. Note that this is not just a limitation of our present

technique, but is also a challenge for most other deep learning
based vulnerability detectors. We plan to investigate richer
encodings, which might also provide information such as the
ordering of constants to help address this class of limitations.

7. Conclusion

In this paper, we studied the problem of using graph
convolutional networks for vulnerability detection in binaries.
Our technique, BinHunter, constructs subgraphs of the PDG
to identify relevant portions of the function being tested, and
learns a novel graph representation using the sliced PDG. In
addition to flagging potential vulnerabilities, our technique is
therefore also able to localize the warning to small fragments
of the function being examined. Experiments with programs
from the Juliet test suite and a dataset of vulnerable Debian
packages indicate that our technique outperforms existing
binary vulnerability detectors.

References

[1] Shushan Arakelyan, Sima Arasteh, Christophe Hauser, Erik Kline, and
Aram Galstyan. Bin2vec: learning representations of binary executable
programs for security tasks. Cybersecurity, 4(1):1–14, 2021.

[2] Amy Aumpansub and Zhen Huang. Learning-based vulnerability
detection in binary code. In 2022 14th International Conference on
Machine Learning and Computing (ICMLC), pages 266–271, 2022.

[3] Hesam Azadjou, Ali Marjaninejad, and Francisco Valero-Cuevas. Play
it by ear: A perceptual algorithm for autonomous melodious piano
playing with a bio-inspired robotic hand. bioRxiv, pages 2024–06,
2024.

[4] Bita Azarijoo, Mostafa Salehi, and Shaghayegh Najari. A meta path-
based approach for rumor detection on social media. arXiv preprint
arXiv:2301.04341, 2023.

[5] Sara Baradaran, Mahdi Heidari, Ali Kamali, and Maryam Mouzarani.
A unit-based symbolic execution method for detecting memory
corruption vulnerabilities in executable codes. International Journal
of Information Security, pages 1–14, 2023.

[6] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and
Roopak Shah. Signature verification using a” siamese” time delay
neural network. Advances in neural information processing systems,
6, 1993.

[7] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi
Ray. Deep learning based vulnerability detection: Are we there yet.
IEEE Transactions on Software Engineering, 2021.

[8] Kenneth Ward Church. Word2vec. Natural Language Engineering,
23(1):155–162, 2017.

[9] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of
latent variable models for structured data. In International conference
on machine learning, pages 2702–2711. PMLR, 2016.

[10] Steven HH Ding, Benjamin CM Fung, and Philippe Charland.
Asm2vec: Boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization. In 2019
IEEE Symposium on Security and Privacy (SP), pages 472–489. IEEE,
2019.

[11] Sebastian Eschweiler, Khaled Yakdan, Elmar Gerhards-Padilla, et al.
discovre: Efficient cross-architecture identification of bugs in binary
code. In Ndss, volume 52, pages 58–79, 2016.

[12] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa,
and Heng Yin. Scalable graph-based bug search for firmware images.
In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 480–491, 2016.

[13] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems (TOPLAS), 9(3):319–349,
1987.

[14] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
{AFL++}: Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20), 2020.

[15] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, Heyuan Shi, and Jiaguang Sun.
Vulseeker-pro: Enhanced semantic learning based binary vulnerability
seeker with emulation. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 803–
808, 2018.

[16] Ghidra. Ghidra reference. https://ghidra-sre.org/, 2018.

[17] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat,
Josselin Feist, and Laurent Mounier. Toward large-scale vulnerability
discovery using machine learning. In Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy, pages
85–96, 2016.

[18] Arash Hajisafi, Haowen Lin, Yao-Yi Chiang, and Cyrus Shahabi.
Dynamic gnns for precise seizure detection and classification from
eeg data. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 207–220. Springer, 2024.

[19] Arash Hajisafi, Haowen Lin, Sina Shaham, Haoji Hu, Maria Despoina
Siampou, Yao-Yi Chiang, and Cyrus Shahabi. Learning dynamic
graphs from all contextual information for accurate point-of-interest
visit forecasting. In Proceedings of the 31st ACM International
Conference on Advances in Geographic Information Systems, pages
1–12, 2023.

[20] Yuede Ji, Lei Cui, and H Howie Huang. Buggraph: Differentiating
source-binary code similarity with graph triplet-loss network. In
Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, pages 702–715, 2021.

[21] Yoon Kim. Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882, 2014.

[22] Thomas N Kipf and Max Welling. Semi-supervised classification
with graph convolutional networks. arXiv preprint arXiv:1609.02907,
2016.

[23] Lancer. asm2vec: Learning program vector representations for binary
code similarity analysis, 2018. https://github.com/Lancern/asm2vec.

[24] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In International conference on machine learning,
pages 1188–1196. PMLR, 2014.

[25] Young Jun Lee, Sang-Hoon Choi, Chulwoo Kim, Seung-Ho Lim,
and Ki-Woong Park. Learning binary code with deep learning to
detect software weakness. In KSII the 9th international conference
on internet (ICONI) 2017 symposium, 2017.

[26] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan
Chen. Sysevr: A framework for using deep learning to detect
software vulnerabilities. IEEE Transactions on Dependable and Secure
Computing, 19(4):2244–2258, 2021.

[27] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang,
Zhijun Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based
system for vulnerability detection. arXiv preprint arXiv:1801.01681,
2018.

[28] Shigang Liu, Mahdi Dibaei, Yonghang Tai, Chao Chen, Jun Zhang,
and Yang Xiang. Cyber vulnerability intelligence for internet of things
binary. IEEE Transactions on Industrial Informatics, 16(3):2154–2163,
2019.

[29] Zian Liu, Lei Pan, Chao Chen, Ejaz Ahmed, Shigang Liu, Jun Zhang,
and Dongxi Liu. Vulmatch: Binary-level vulnerability detection
through signature. arXiv preprint arXiv:2308.00288, 2023.

[30] Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang, Wei Xie,
Xu Zhou, Danjun Liu, and Kai Lu. Vulhawk: Cross-architecture
vulnerability detection with entropy-based binary code search. In
NDSS, 2023.

[31] Mandiant. Ghidrathon GitHub Repository. https://github.com/
mandiant/Ghidrathon, 2023.

[32] FGG Meade. Juliet test suite v1. 2 for c/c++ user guide. no. December,
2012.

[33] Maryam Mouzarani, Ali Kamali, Sara Baradaran, and Mahdi Heidari.
A unit-based symbolic execution method for detecting heap overflow
vulnerability in executable codes. In International Conference on
Tests and Proofs, pages 89–105. Springer, 2022.

[34] Nico Naus, Freek Verbeek, Dale Walker, and Binoy Ravindran. A
formal semantics for p-code. In Verified Software. Theories, Tools
and Experiments., pages 111–128, Cham, 2023. Springer.

[35] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. Advances in neural information processing
systems, 14, 2001.

[36] Hong Nguyen, Arash Hajisafi, Alireza Abdoli, Seon Ho Kim, and
Cyrus Shahabi. An evaluation of time-series anomaly detection in
computer networks. In 2023 International Conference on Information
Networking (ICOIN), pages 104–109. IEEE, 2023.

[37] National Institute of Standards and Technology (NIST). National
vulnerability database (nvd), 2023. https://nvd.nist.gov/.

[38] Debian Project. Debian package tracker – snapshot service, 2023.
https://snapshot.debian.org/.

[39] Parsa Razmara, Tina Khezresmaeilzadeh, and B Keith Jenkins. Fever
detection with infrared thermography: Enhancing accuracy through
machine learning techniques. arXiv preprint arXiv:2407.15302, 2024.

[40] Andreas Schaad and Dominik Binder. Deep-learning-based vulnera-
bility detection in binary executables. In International Symposium on
Foundations and Practice of Security, pages 453–460. Springer, 2022.

[41] Sina Shaham, Arash Hajisafi, Minh K Quan, Dinh C Nguyen, Bhaskar
Krishnamachari, Charith Peris, Gabriel Ghinita, Cyrus Shahabi, and
Pubudu N Pathirana. Holistic survey of privacy and fairness in machine
learning. arXiv preprint arXiv:2307.15838, 2023.

[42] Noam Shalev and Nimrod Partush. Binary similarity detection
using machine learning. In Proceedings of the 13th Workshop on
Programming Languages and Analysis for Security, pages 42–47,
2018.

[43] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[44] Yunlong Song. Genius: Generic neural shape analysis, 2019.
https://github.com/Yunlongs/Genius.

[45] Junfeng Tian, Wenjing Xing, and Zhen Li. Bvdetector: A program
slice-based binary code vulnerability intelligent detection system.
Information and Software Technology, 123:106289, 2020.

[46] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu,
Jianwei Zhuge, and Chao Zhang. Jtrans: Jump-aware transformer for
binary code similarity detection. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pages 1–13, 2022.

[47] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform
binary code similarity detection. In Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security, pages
363–376, 2017.

[48] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting
Liu. Patch based vulnerability matching for binary programs. In
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 376–387, 2020.

[49] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck.
Modeling and discovering vulnerabilities with code property graphs.
In 2014 IEEE Symposium on Security and Privacy, pages 590–604.
IEEE, 2014.

[50] Michał Zalewski. American fuzzy lop - whitepaper, 2016.

[51] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. Devign: Effective vulnerability identification by learning com-
prehensive program semantics via graph neural networks. Advances
in neural information processing systems, 32, 2019.

[52] Xiaogang Zhu, Sheng Wen, Alireza Jolfaei, Mohammad Sayad
Haghighi, Seyit Camtepe, and Yang Xiang. Vulnerability detection
in siot applications: A fuzzing method on their binaries. IEEE
Transactions on Network Science and Engineering, 9(3):970–979,
2020.

