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Abstract. Characterizing the set of reachable states of a distributed
protocol that uses asynchronous message-passing communication is dif-
ficult due to the exponential number of possible interleavings of local
executions. Any syntactic expression overapproximating the set of reach-
able states is an invariant formula of the system, and is a valuable tool
that can aid programmers in understanding global program behavior. In
this paper, we propose a method for obtaining a formula that approxi-
mates the set of reachable states; we call this formula a likely invariant,
and we learn it using information only obtained from system executions.
Our method doubles up as a way for identifying states that may not be
known to be reachable (based on the best-known likely invariant) and
hence may appear anomalous to the system designer. In some cases, they
may be actually anomalous and may indicate a lurking (heisenbug). Our
method has the following main steps: (1) we observe the global states
of the system reached during its execution, (2) we asynchronously learn
a likely invariant from the observed global states, (3) we monitor the
learned likely invariant for the system states that do not satisfy it, and
(4) if such states are found, we revise the likely invariant. We implement
our overall methodology for a number of distributed protocols written
in the Promela language and show that our technique can learn useful
information about the system from just runtime executions.

1 Introduction

Distributed systems serve as the backbone of most real-world computing appli-
cations. These systems are modeled as a collection of concurrent processes that
rely on local computations and asynchronous message-passing to achieve their
objectives, involving multiple functions, e.g., consensus, coordination, memory
coherence, decentralized computation, and database consistency. Therefore, the
inherent nondeterminism can exponentially increase the number of possible ex-
ecution sequences and can significantly expand the space of reachable system
states, making it challenging to formally reason about system behaviors.

A Boolean-valued expression over program variables that is true for every
reachable state of the program is called an invariant formula or simply, a pro-
gram invariant. Learning program invariants is valuable as it enhances the user
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Fig. 1: High-level Algorithm 1 for learning and online monitoring likely invariants

understanding of the set of reachable states of the program, and can also be used
to prove safety of the program w.r.t. a user-specified safety specification [2]. We
define a likely invariant as a syntactic expression which holds true for all observed
states of a program (in general, a subset of the reachable states1).

While many formal techniques [7,12,18,19,29,35,36,42,45] including model
checking [2] have been effective for invariant learning, they usually struggle when
applied to large-scale distributed systems. Some approaches require prior knowl-
edge from the user; for instance, some invariant-learning techniques such as ICE-
learning [18,19] require a user-provided safety property as a vital step in learning
the invariant. Other invariant synthesis techniques make use of model checkers,
SMT solvers, theorem provers, or constrained Horn clause solvers [36,41,47,51]
to verify if a synthesized invariant is valid. Unfortunately, this restricts the use
of invariant synthesis to programs for which the above tools are tractable. These
limitations motivate our use of dynamic invariant generation, where we approx-
imate reachable states during execution, examples include approaches based on
Daikon [11, 25]. Given a sequence of program states, Daikon uses predefined
expression templates to synthesize invariant expressions derived from these tem-
plates. However, its reliance on specific syntactic expressions may result in ex-
pressions that are too conservative (i.e., with large error in overapproximating
the reachable state set).

To address these challenges, this paper introduces the LIDO framework (Likely
Invariant Discovery through Online monitoring) shown in Fig. 1. LIDO has two
main components: a runtime monitor that continuously monitors program ex-
ecutions for counterexample states and an invariant learning engine. We first
describe the invariant learner, which is a data-driven step: we use the observed
states of the program as positive examples which must be satisfied by any can-
didate invariant expression. Learning such an expression usually follows the Oc-
cam’s Razor principle of finding the shortest syntactic expression that explains
the (positive) examples. However, as true is a trivial expression that is an in-
variant, we also need negative examples to get non-trivial expressions. To do

1 Determining if a Boolean expression holds for every reachable state is undecidable
for general programs by a reduction from the halting problem for Turing machines.
Likely invariants are thus a best effort solution to approximate reachable states.
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so, we use a “guess and check” approach, i.e., we guess unreachable states (by
random sampling) and use them as negative examples in the decision-tree based
learning method. Checking if the speculated states is part of online validation
of the invariant, and incorrectly guessed unreachable states form one kind of
counterexample. Existing approaches [3, 8, 19–21, 25, 48, 50, 51] use formal tools
to verify or refute a synthesized invariant; however, LIDO employs online mon-
itoring to find states that should be included in the invariant (but are not).
These form the other kind of counterexample states. Any counterexample state
discovered by the runtime monitor leads to a revision of the likely invariant.

A key challenge in the decision-tree based invariant synthesis method is iden-
tifying atomic predicates that should constitute the invariant expression. In
this work, we assume that the user provides predicate templates of the form
size(a) > c1, x1 + x2 < c2, etc. Here, a, x1, x2 are program variables, and c1, c2
are symbolic constants. LIDO discovers concrete predicates from such symbolic
predicates automatically.

We provide experimental evaluation of our technique for several distributed
protocols written in the Promela modeling language. Through the SPIN execu-
tion environment [23], we can generate runtime traces for Promela programs.
Our technique itself is language-agnostic, and with some engineering effort can
be applied to programs written in other languages such as Java or P [9]. Through
our experiments on Promela, we demonstrate the potential of our technique to
work on more complex programming and modeling languages. As our technique
for learning the invariant is a purely data-driven technique with only runtime
validation, an important question is whether the likely invariants that we learn
are indeed true invariants. Here, we leverage the Spin model checker that can
verify Promela programs to empirically evaluate the invariants learned by LIDO.
We show that in spite of being purely data-driven, we can learn invariants that
are valid.

Contributions. To summarize, this paper makes the following contributions:

(i) A decision-tree based method to learn invariants only from observed system
states and speculated unreachable states.

(ii) An online monitoring framework to validate the learned invariant and revise
the candidate invariant.

(iii) A runtime technique to discover concrete predicate expressions from user-
supplied template predicates.

(iv) A novel evaluation measurement for likely invariants’ quality based on three
metrics: soundness, tightness, and safety.

(v) Demonstrations of the practical usefulness of our approach for distributed
protocols modeled in the Promela language [22].

2 Preliminaries

In this section, we formalize the terminology needed to explain our approach
with Peterson’s algorithm, which presents mutual exclusive access to the critical
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1 // Peterson ’s solution to the mutual exclusion problem - 1981

2 bool turn , flag [2];

3 byte ncrit;

4 active [2] proctype user() {

5 assert(_pid == 0 || _pid == 1);

6 again:

7 flag[_pid] = 1;

8 turn = _pid;

9 (flag[1 - _pid] == 0 || turn == 1 - _pid);

10 ncrit++;

11 assert(ncrit == 1); // critical section

12 ncrit--;

13 flag[_pid] = 0;

14 goto again }

Fig. 2: Peterson’s mutual exclusion algorithm for 2 processes in Promela

section for two concurrent processes [37] (henceforth denoted as Pmutex,2 for
brevity). We show Pmutex,2 modeled using the Promela language [22] in Fig. 2.

2.1 Program structure and modeling assumptions

Program variables, the program state, and program execution traces are all
standard notions, we define them formally so that we can precisely state the
problem we wish to solve.

Definition 1 (Variables, State). A type t refers to a finite or an infinite set.
A program variable v of type t is a symbolic name that takes values from t. We
use type(v) to denote variable types. We use V to denote the set of program
variables. A valuation ν maps a variable v to a specific value in type(v). ν(V )
denotes the tuple containing valuations of the program variables; a program state
is a specific valuation of its variables during program execution.

The following types are included: bool = {true, false}, int = Z, byte =
{0,−1, 32 + 1}, finite enumeration types which are some finite set of values,
the program counter pc type that takes values in the set of line numbers of
the program. We assume that the grammar of our modeling language provides
syntactically accurate expressions made up of operators and program variables,
and that the well-defined semantics of the language defines the valuation of an
expression based on the variable valuations. Given a set of variables {v1, . . . , vk}
and an expression e(v1, . . . , vk), we use ν(e) to denote the valuation of the ex-
pression when each vi is substituted by ν(vi).

Procedure calls and procedure-local variables are present in the majority of
real-world programs; we assume that the program is modeled in a language that
abstracts away such details. Real-world concurrent programs typically use either
a shared memory or message-passing paradigm to perform concurrent operations
of individual threads or processes2. We assume that the number of concurrent

2 In most modern programming languages, processes and threads have been used to
mean different abstract units of concurrent operation. For the purpose of this paper,



Discovering Invariants and Runtime Monitoring in Distributed Systems 5

processes in the program, N , is known and fixed throughout program execution.
Thus, our modeling language does not have statements to start a new process or
terminate one. So, a concurrent program for us is a set of N processes, with each
process being a sequence of atomic statements. We include statements such as
assignments and conditional statements (which execute sequentially), and goto

statements to alter the sequential control flow. An assignment statement is of
the form vi ← e, where e is an expression whose valuations must be in type(vi).
The formal semantics of an assignment statement is that for all variables that
do not appear on the LHS of the assignment, the valuation remains unchanged,
while the valuation of vi changes to ν(e).

Example 1. For Pmutex,2, V = {ℓ, turn, flag, ncrit}, where type(ℓ, turn, flag[i],
ncrit) = (pc× pc, bool, bool× bool, byte). The variable ℓ is a pair that main-
tains program counters for the two processes. The statements flag[ pid] = 1

and turn = pid are assignments. The state s0 is

s0 =


ℓ1 7→ 7,
ℓ2 7→ 7,
turn 7→ 0,
flag[0] 7→ 0,
flag[1] 7→ 0,
ncrit 7→ 0


After Process 0 ( pid = 0) executes two assignment statements (flag[0] ← 1
and turn← 0), the program state changes to the following:

s2 =


ℓ1 7→ 9,
ℓ2 7→ 7,
turn 7→ 0,
flag[0] 7→ 1,
flag[1] 7→ 0,
ncrit 7→ 0


The execution semantics of a program are typically explained using the notion
of a labeled transition system.

Definition 2 (Labelled Transition System (LTS) for a concurrent pro-
gram). A labelled transition system is a tuple (S,L, T, Init) where S is a set of
system states, T ⊆ S × L × S is the transition relation, L is the set of pro-
gram statements that serve as labels for elements in T , and Init is a set of initial
program states as Init ⊆ S.

Labels identify the program statement that caused the transition, and transi-
tions describe how a system changes from one state to another. Converting a
program to its corresponding LTS is a well-defined process (see [2]); where tran-
sition is added based on the effect of the corresponding program statement on

we assume that we are using a modeling language such as Promela or P that abstracts
away from these finer details.
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the program variables (including the program counter). Assignment statements
involve updating the program counter and the variables on the LHS. For condi-
tional statements, a transition is added to the next state only if the valuation
corresponding to the current state satisfies the condition. For goto statements,
only the program counter is updated. Computing the LTS for a concurrent pro-
gram is a bit more tricky. We typically use an interleaved model of concurrency,
so from every state, we consider N next states corresponding to each of the N
concurrent processes executing. We assume that each of the sequential processes
involved in the computation is deterministic, and the only source of nondeter-
minism is context switches due to an external scheduler3. We also remark that
an LTS is finite if the type of each program variable is finite, otherwise an LTS
can have an infinite set of states.

Definition 3 (Reachable States). For a program P as a labeled transition
system, its set of reachable states Reach(P, Init) is defined as the set of all states
that can be reached from an initial state s0 ∈ S through the execution of the
program statements. Formally, Reach(P, Init) is the smallest set R that satisfies
the following:

1. s0 ∈ Init =⇒ s ∈ R, and,
2. s ∈ R ∧ (s, s′) ∈ T =⇒ s′ ∈ R.

Example 2. We remark that the state s2 in Example 1 is reachable from s0,

since: s0
flag[ pid]=1;turn= pid−−−−−−−−−−−−−−−→ s2. States where ncrit = 2 are unreachable from

s0.

Definition 4 (Program Trace). A program trace σ of length k = len(σ) is
a sequence of states s0, s1, . . . , sk−1, s.t., s0 ∈ Init, and for all j ∈ [1, k − 1],
(sj−1, sj) ∈ T .

Example 3. A possible trace σ of Pmutex,2 with len(σ) = 5 is shown below.

⟨7, 7, 0,0,1,0⟩︸ ︷︷ ︸
s0

,

⟨7, 8, 1,0,1,0⟩︸ ︷︷ ︸
s1

,

⟨7, 9, 1,0,1,0⟩︸ ︷︷ ︸
s2

,

⟨7, 11, 1,0,1,1⟩︸ ︷︷ ︸
s3

,

⟨7, 13, 1,0,0,0⟩︸ ︷︷ ︸
s4

,


3 Our techniques can also handle nondeterminism in the sequential processes. If the
number of nondeterministic choices available is fixed and known a priori, then the
procedure in Fig. 1 will converge. If the nondeterminism is unbounded then the con-
vergence of the procedure depends on the generalizability of the learning procedure
and the kind of counterexamples obtained by the testing procedure.
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Remark 1. To obtain a program trace, starting from a random s0 ∈ Init, we
can randomly sample a successor s1 from all possible pairs (s0, s

′) ∈ T , and
repeat this procedure from each subsequent si. Some of the successor states for
a given state s correspond to a context switch for the distributed program (as
it may require a different process to execute its atomic instruction than the one
that executed to reach the state s). To randomly sample the initial or successor
states, we need a suitable distribution over the initial states and outgoing labelled
transitions from a given state. This distribution is defined by the scheduler and
assumed to be unknown to the program developer.

Definition 5 (Monitor). A monitor is to observe a finite prefix of a program
trace σ = (s0, s1, . . . , sk), where k is the length of the prefix. The monitor evalu-
ates whether the observed trace σ satisfies a given set of properties ϕ and yields
a prediction.

Runtime monitoring refers as monitoring the system’s states during its exe-
cution and detecting whether the behaviors align with predefined specifications.
Runtime monitoring is a popular approach for dynamic verification [28]. The
offline monitoring [17] collects runtime information during the system’s execu-
tion and stores it for later analysis. The analysis is performed offline once the
system has completed execution. In contrast, online monitoring [17] refers to
the simultaneous observation and analysis of system states as it is running. The
concurrent monitor enables early detection and response, which is essential for
critical systems requiring immediate corrective actions.

Definition 6 (Invariants). An invariant I is a Boolean-valued formula over
program variables and constants that is satisfied by every reachable program state.

Example 4. For instance, in the Peterson’s model, an invariant is 0 ≤ ncrit ≤ 1.
This invariant is useful to show that at most one process is in the critical section
at any given time.

Remark 2 (About inductiveness of invariants). Invariants and inductive invari-
ants are sometimes confused. An inductive invariant is defined as a set of states
s.t., after executing any program statement from any state within this set, the
resulting state also belongs to the same set. The exact set of reachable states of a
program is an inductive invariant. However, obtaining a formula that accurately
characterizes all reachable states can be challenging. Instead, it is often more
practical to find a formula that over-approximates the reachable states to facili-
tate safety verification. While any formula that over-approximates the reachable
states is considered an invariant, it may not be an inductive invariant. Many ver-
ification methods prefer inductive invariants because they can be verified using
automated tools like SMT solvers. However, deriving inductive invariants using
data-driven techniques requires is more complex. In our approach, we would re-
quire an execution engine that uses a labeled transition system representation
of the given protocol to execute arbitrary transitions from states in the likely
invariant. As the invariant expressions that we obtain are adequate to perform
safety proofs, we defer learning inductive invariants to future work.
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Algorithm 1: Pseduo-code for LIDO

input : Number of points randomly sampled ℓ
Precision threshold δ
Depth of already constructed decision tree d
Maximum depth of decision tree k
Ratio of speculative negative to positive examples α

output: likelyInv ϕ
1 reached← {}, speculated← {}, ϕ← false, n← 0
2 repeat
3 τ ← get trace
4 ce← {s | s ∈ τ ∩ J¬ϕK} // reached state in ¬ϕ

5 ce← ce ∪ {s | s ∈ τ ∩ speculated} // reached state assumed unreachable

6 reached← reached ∪ ce // update reached states

7 speculated←
(speculated\ce) ∪ randomSample(S \ ((speculated\ce) ∪ reached), ℓ)

8 s.t. |speculated|
|reached| < α

9 if ce ̸= ∅ then
10 atoms← predicates discovery(reached, template predicates)
11 ϕ← Learner(atoms, reached, speculated, d, k, δ)

12 until true
13 return ϕ

Problem statement. Let P be a distributed program. Let Reach(P, Init) be the
set of reachable states of P. Let G denote a user-defined grammar to specifies
(a possibly infinite) set of Boolean-valued expressions over program variables,
and let L(G) denote this set. The objective of this paper is to design an runtime
algorithm able to learn a program likely invariant ϕ without interrupting the
system execution. The invariant has the following properties:

1. Soundness of the likely invariant:

((s ∈ Reach(P, Init))⇒ (s ∈ ϕ)) (1)

2. Tightness of the likely invariant:

ϕ = argmin
ϕ∈L(G)

| {s | s ̸∈ Reach(P, Init) ∧ s ∈ ϕ} | (2)

3 Data-driven Invariant Generation

In this section, we present the overall algorithm for synthesizing likely invariants
in an online learning setting in Algorithm 1. We use the notation JϕK to represent
the set of states that satisfy ϕ. Initially, the likely invariant is set to false, so in
Line 4, the set ce contains all states encountered in the sampled trace T , which
are then added to the set reached in Line 6. The next step involves sampling
a set of states speculated to be unreachable, represented by the set speculated.
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We sample ℓ states from the state space S (excluding those already in reached

or speculated) and add them to speculated as long as the ratio |speculated|
|reached| remains

below a user-specified threshold α (Line 8). In the first iteration, since ce is
non-empty, the algorithm invokes the Learner procedure with the sets reached
(positive examples), speculated (negative examples), and hyper-parameters d, k,
and δ (elaborated in the next section) (Line 11). The main loop of the algo-
rithm (Lines 2-12) iteratively checks if the likely invariant from the previous
iteration survives. This is done by sampling a new trace T (Line 3) and verify-
ing whether T contains any states not included in ϕ (Line 4) or any previously
speculated unreachable states (Line 5). If either condition is met, a revision is
triggered in Line 11. As shown in Fig.1, we have a monitor and a generator to
keep monitoring the system states and generate positive states P and negative
states N. The states are then forwarded to Learner to further learn/revise the
likelyInv.

Discovering Concrete Predicates. Before each revision, we first discover a
dynamic set of concrete predicates (Line 10). The predicates discovery function
assumes a grammar (similar to the one shown in Table 1) with predicate tem-
plates. It constructs a dynamic set of concrete predicates based on the observed
states of the system; essentially, it replaces parameters in the predicate tem-
plates with variable values in the set of observed states. We remark that for
any invariant expression to be tight, one the concrete predicates thus obtained
must be present in the final synthesized predicate, and thus it is enough to only
consider as many concrete predicates as the number of observed states. Thus,
though there may be a very large number of predicates associated with a given
set of variables, we can restrict the set of concrete atomic predicates to a finite
number.

Example 5. We now give an example run of the algorithm on Pmutex,2. Recall
that the state of Pmutex,2 is a valuation of (ℓ1, ℓ2, turn, flag[0], flag[1], ncrit).
The trace of valuations of these state variables from Example 3 is a possible
sampled trace of Pmutex,2 obtained by using RecordStates(Pmutex,2), reproduced
here for ease of exposition:

⟨7, 7, 0,0,1,0⟩, ⟨7, 8, 1,0,1,0⟩, ⟨7, 9, 1,0,1,0⟩, ⟨7, 11, 1,0,1,1⟩, ⟨7, 13, 1,0,0,0⟩, ⟨7, 7, 0,0,0,0⟩

In Line 8, we speculatively add following states to speculated:

speculated = {⟨8, 7, 0, 1, 0, 0⟩, ⟨9, 7, 0, 1, 0, 0⟩} (3)

We then use the positive (reached) and negative (speculated) examples to learn
a candidate likely invariant ϕ that over-approximates reached but has minimal
overlap with speculated. Suppose we learn the likely invariant ϕ1 ≡ flag[0] = 0.
We can check that all states in reached satisfy ϕ1 and none of the states in
speculated satisfy it. In the next iteration, suppose we sample the following trace
next:

⟨7, 7, 0,1,0,0⟩, ⟨8, 7, 0,1,0,0⟩, ⟨9,7,0,1,0,0⟩, ⟨11, 7, 0,1,0,1⟩, ⟨13, 7, 0,0,0,0⟩, ⟨7, 7, 0,0,1,0⟩
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ArrayExpr (ae) := a | subset(a)
ArrayArithExprs (aae) := index (a, i) | λ(a, f)

ArrayFunc (f ) := len(a) | sum(a) | min(a) | max (a)

ArithExprs (e) := v | e ⋄ e | aae ⋄ aae | aae ⋄ e | e ⋄ aae

Operator (⋄) := + | − | × | ÷ | mod

Comparator (◦) := = | > | < | ≤ | ≥ | ̸=
Predicate Template := e ◦ p

Table 1: Grammar for predicate templates; v is an arbitrary numeric variable, a an
array variable, and p a parameter. Here, i is an integer.

Clearly, the states in this trace refute the likely invariant ϕ1 because flag[0] ̸=
0, which means that these states will appear in the set ce. We note that the second
state in the set speculated (shown in (3)) was speculated to be unreachable but
is actually reached in the trace (shown in bold). Thus, this state also gets added
to ce, and removed from speculated. With the revised speculated and reached, we
can re-learn the likely invariant. ⊓⊔

4 Decision Tree Learning for Invariants

In this section, we describe the details of Learner as presented in Algorithms 2,3.
The Learner algorithm combines decision tree learning, syntax-guided synthesis,
and a novel subsampling technique to enable efficient inference of likely invariants
at runtime.

Syntax-guided Synthesis. Our method for learning likely invariants is moti-
vated by syntax-guided synthesis (SyGuS) [1]. We assume that a grammar G is
provided, which specifies Boolean-valued formulas constructed from user-defined
parametric atomic predicates: ϕ ::= atom(p) | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ. In this context,
atom(p) denotes Boolean-valued expressions involving program variables and pa-
rameters, referred to as parametric atomic predicates. The parameters p in atom
act as placeholders for constant values of corresponding types. Replacing a para-
metric predicate with a suitable constant results in a concrete atomic predicate.
Following predicate discovery, we obtain a set of concrete atomic predicates, rep-
resented by atoms, which correspond to a finite collection of instantiated atomic
predicates. The pre-defined parametric atomic predicates are sufficient for ex-
ploring concrete atoms, as they are derived from combinations of global variables
and potential grammar rules. The grammar for atomic predicates that we use
for invariant synthesis is provided in Table 1.

Example 6. Consider the following grammar for parameterized atom symbols.

atom(c) ::= (x ≤ c) | (x ≥ c) | (y ≤ c) | (y ≥ c)
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Here, the program variables V is the set {x, y} (say of type byte), and c is a
parameter of type byte. Substituting c with values, e.g., 2, -3, etc., gives atomic
predicates x ≤ 2, y ≥ −3, etc. ⊓⊔

Next, we present the concept of a signature for a well-formed formula in G. We
assume that we have an ordered set of positive examples P = ⟨e1, . . . , e|P |⟩ and
an ordered set of negative examples N = ⟨f1, . . . , f|N |⟩.

Definition 7 (Formula signature). Given ordered sets P and N , the signa-
ture of a formula ϕ is a (|P | + |N |)-bit vector σϕ, where for each i ∈ [ 1, |P | ] ,
σϕ
i = 1 iff ei |= ϕ and 0 otherwise, and for i ∈ [ |P | + 1, |P | + |N | ], σϕ

i = 1 iff
fi−|P | |= ϕ and 0 otherwise.

Assuming the sets P and N are concatenated, the bit at a given index in σ is 1 iff
the corresponding example in the concatenated set satisfies ϕ. It is important
to recognize that, with the formula signatures for specific atomic predicates,
we can easily derive the signatures for more complex formulas in the grammar
by recursively applying the following rules, where bw op represents the bitwise
application of the corresponding logical operation.

σ¬ϕ = bw not(σϕ), σϕ1∧ϕ2 = bw and(σϕ1 , σϕ2), σϕ1∨ϕ2 = bw or(σϕ1 , σϕ2)

Using the formula signature, we can also calculate the precision and recall of a
formula. In the definitions below, we first define precision and recall, and then
provide the expressions over σ. Precision and recall play a role in our invariant
learning and the stopping criteria of subsampling, which will be explained in the
following subsections.

precision(ϕ, P,N) =
|P ∩ JϕK|

|(P ∪N) ∩ JϕK|

=

∣∣∣{i | i ≤ |P | ∧ σϕ
i = 1

}∣∣∣
sum(σϕ)

(4)

recall(ϕ, P,N) =
|P ∩ JϕK|
|P |

=

∣∣∣{i | i ≤ |P | ∧ σϕ
i = 1

}∣∣∣
|P |

(5)

Learner is presented in two parts: a decision tree learner and a sub-sampling pro-
cedure to improve the scalability and generalizability of decision-tree learning.
Previous work such as [46] frequently employs enumerative solvers for learning
expressions. Although these solvers perform effectively in practice for learning
expressions over more complex types, we have found that they do not scale as
effectively when it comes to learning Boolean-valued functions. In contrast, the
decision tree model is particularly effective to tackle the combinatorial aspect of
learning Boolean combinations of atomic predicates.
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Algorithm 2: DecisionTreeLearner(atoms, P,N, d, k, δ)

input :
– atoms: a set of atoms
– P : set of positive examples, N : set of negative examples
– d : depth of already constructed decision tree
– k : maximum allowed depth for the decision tree

output: likelyInv ϕ
1 δ ← MinPrecisionThreshold
2 if d < k then
3 atom = argmax

atom∈atoms
(IG(atom, P,N))

4 P ′ ← P ∩ JatomK, N ′ ← N ∩ J¬atomK
5 atoms′ = atoms \ {atom}
6 ϕ← (atom ∧ DecisionTreeLearner(atoms′, P ′, N ′, d+ 1, k, δ) ∨
7 (¬atom ∧ DecisionTreeLearner(atoms′, P \ P ′, N \N ′, d+ 1, k, δ)

8 if (precision(ϕ, P,N) > δ ∧ recall(ϕ, P,N) = 1) then return ϕ
9 else report error: k is too low

Decision Tree Learner. Algorithm 2 presents the decision tree learning tech-
nique. Each internal node in our decision tree model represents an atom with
its formula signature. Given our speculative sampling technique, ensuring that
our decision tree has an appropriate depth bound is critical to avoid over-fitting
(if the depth is too high) or over-generalizing (if the depth is too low). The key
steps are shown in Algorithm 2. The DecisionTreeLearner procedure is a recursive
algorithm; each recursive instance is invoked with sets of states P and N , and
it constructs a sub-tree that best partitions states in P and N . The subtree is
then returned to the caller, where it is added as a child to the partial tree be-
ing constructed by the caller. The parameter d equals the depth of the decision
tree constructed by the caller. Each recursive call finds the best atom to use as
the root of the sub-tree – we explain how we define the best atom below. All
examples from P that satisfy atom are removed to get P ′, and those from N
not satisfying atom are removed to get N ′ (Line 4). The predicate atom is itself
removed from the set atoms to get atoms′ (Line 5). Then DecisionTreeLearner is
recursively invoked on the sets P ′ and N ′ (to form the left sub-tree) and on the
sets P \ P ′ and N \ N ′ (to form the right sub-tree); the recursive invocations
are with an incremented value of d (Line 7). The likely invariant expression is
constructed using tail recursion. If the learned likely invariant lacks sufficient
precision (i.e., too many negative states are included in the likely invariant),
then either the maximum allowed depth k is too low, or the choice of atoms is
insufficient to learn a good invariant, and the procedure fails. We remark that
we use a precision threshold of less than 1 because states in N are not known to
be truly unreachable, but are speculative. Therefore, it is reasonable to allow a
certain number of speculative negative states to be included in the invariant.

To select the best atom in each recursive call, we choose the atom with the
highest information gain over the sets P and N (denoted IG(atom, P,N)) in
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Algorithm 3: Learner(P,N, δ)

input : P : set of positive examples
N : set of negative examples
δ : precision threshold

output: likelyInv ψ
1 P̃ , Ñ = subSample(P,N)

2 while P̃ ̸= P ∨ Ñ ̸= N do

3 ψ = DecisionTreeLearner(P̃ , Ñ , 0, k, atoms)
4 if precision(ψ, P,N) > δ ∧ recall(ψ, P,N) = 1 then return ψ

5 else P̃ = P̃ ∪ subSample(P ), Ñ = Ñ ∪ subSample(N)

6 increase tree depth k

Line 3. This is a commonly used metric in decision tree algorithms [31]. To
define information gain, we make use of Shannon entropy. Given sets P and N ,
consider the set P ∪N . The probability of a randomly drawn state being in P

is pP = |P |
|P∪N | and being in N is pN = |N |

|P∪N | . Then the Shannon entropy is

defined as:

H(P,N) = −pP log2(pP )− pN log2(pN ) (6)

Lower entropy signifies a higher level of separation between positive and negative
points in the dataset. In other words, when the dataset is more homogeneous
and primarily consists of one class, the entropy will be lower. Conversely, higher
entropy signifies a greater level of randomness (or uncertainty) in the dataset,
characterized by a more equal distribution of class labels. In our context, this
means that a more balanced set of points is being separated. Information Gain
with Shannon Entropy (as proposed in [52]) is then defined as follows:

IG(P,N, atom) = H(P,N)− pPH(P ∩ JatomK , N ∩ JatomK)
− pNH(P ∩ J¬atomK , N ∩ J¬atomK)

(7)

Subsampling for Efficiency. Now we explain how the overall Learner proce-
dure works. In Line 1 of Algorithm 3, we use subSample to sample states from
the positive examples P and negative examples N . Recall that Learner is invoked
with P = reached and N = speculated. The main idea is to only use the subsets
P̃ , Ñ of P,N to invoke DecisionTreeLearner (Line 3), which returns ψ. Once we
identify a candidate ψ, we check if its recall is 1 (i.e., all reached states are in-
cluded in the likely invariant) and if its precision is above a pre-defined threshold
δ. If yes, the algorithm returns ψ as the candidate likelyInv (Line 4). If it fails
to find a likely invariant with desired precision/recall, subSample gathers more
samples and invokes DecisionTreeLearner (Line 5).

Grammar. The figure illustrates the template-free grammar G designed for
atomic predicates to express invariants. This grammar provides an extensive
range of constructs for logical and arithmetic expressions, array manipulations,
and comparison operations. The grammar is also compatible with standard SMT
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solvers, enabling users to verify invariants when necessary. By limiting expres-
siveness to linear integer arithmetic and simple array manipulations, the gram-
marG ensures that invariants can be synthesized within a feasible computational
framework while still capturing the essential properties needed by programmers
for practical use.

5 Experimental Evaluation

To demonstrate the feasibility of our framework and the quality of the learned
likely invariants, we evaluated LIDO for distributed protocols, which are modeled
in the Promela language. Although our framework can accommodate systems in
other languages such as P [9], TLA+ [34], and others, we selected Promela
for two main reasons: firstly, numerous descriptions of distributed protocols are
readily accessible in Promela. Secondly, Promela programs are compatible with
the Spin model checker [23] its capability to sample finite-length execution traces
of programs. As a comparative baseline, we employed Daikon [11] a widely used
dynamic invariant generation tool that is known for its ability to identify likely
invariants based on runtime traces. Daikon can serve as a front-end invariant
synthesis in the LIDO framework as well. In our experiments, Daikon is used to
substitute Learner, while the operational framework LIDO remained unchanged.

Python implementation. The implementation of the LIDO framework is with
two concurrent Python processes, one to continuously monitor system states
in real-time using the trace generation functionality of the Spin model checker,
while the other to asynchronously synthesize likely invariants based on the moni-
tored program traces. The two processes: the Runtime Monitor process monitors
global program states. It does so by collecting a trace of the global system state
of a fixed length. It then checks if any state in the trace violates the invariant or
invalidates the speculated negative examples. If true, then the likely invariant
needs to be revised, and the process writes the counterexample state(s) on a
shared channel. The Invariant Learner process subscribes to this channel, and
whenever a new counterexample is published to this channel, it invokes the in-
variant learning procedure. This process terminates when a likely invariant is
synthesized, and writes the new likely invariant and the updated set of specu-
lated unreachable states to the shared channel.

In Python, the ready method is used to determine if a subsequent read on the
shared communication channel would block; we use this to check if the invariant
is synthesized before issuing a get on the shared channel to obtain the updated
likely invariant and the set of speculated unreachable states. Both processes are
guaranteed to run concurrently in two separate Python interpreters, thus avoid-
ing potential performance degradation caused by Python’s Global Interpreter
Lock (GIL). The Runtime Monitor process is not expected to stop; however, the
Invariant Learner process does terminte

5.1 Benchmarks and Measurements

To investigate our research goals, we formulated three key questions:
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– RQ1: Is the previous leading method, Daikon, capable of producing high-
quality likely invariants during the runtime monitoring of real-world dis-
tributed systems?

– RQ2: How does LIDO compare to Daikon in terms of the quality of likely
invariants generated during online monitoring of distributed systems?

– RQ3: Is LIDO able to effectively learn likely invariants in large-scale dis-
tributed systems at runtime with minimal overhead?
We assess the quality of a learned likely invariant using three distinct metrics.

The first metric measures the tightness of the invariant by counting the total
number of states that satisfy it. This can be estimated through model counting,
which helps determine if the invariant is overly broad. A maximum bound can
also provide insights into the total number of states, especially when the invariant
implies an infinite number.

The second and third metrics focus on the ability of a posteriori verification
tool to validate that the synthesized invariant aligns with a user-defined safety
property. The soundness of an invariant reflects its accuracy in representing the
distribution of reachable states without being overly aggressive. However, sound-
ness alone does not guarantee utility; for example, a broadly defined invariant
like True may still be considered sound. Furthermore, the safety aspect of an
invariant serves as an important indicator of its practical value, as it suggests
that the system being analyzed remains safe.

Our benchmarks include 13 distributed systems modeled in Promela, drawn
from resources related to Spin and other distributed systems literature. These
systems primarily involve conditional invariants that require more intricate com-
binations of atomic expressions than those typically available in Daikon’s tem-
plates. Notably, our approach to invariant generation successfully identified a
bug in one of Spin’s official systems. Additionally, we effectively generated in-
variants for a large-scale, real-world smart contract system modeled in Spin [49],
which were subsequently verified to ensure the system’s safety properties were
maintained.

5.2 Results for Quality Evaluation

In order to address research questions RQ1 and RQ2, we assessed the perfor-
mance of LIDO through the Learner procedure, which incorporates both positive
and negative examples during the learning process. Daikon* was employed as our
baseline, integrating it into our monitoring framework as the inference engine
to derive invariant expressions. For the ablation study, we ensured that both
Daikon* and LIDO generated invariants within the same execution time, sim-
ulating conditions from Spin. The likely invariants produced by both methods
were subsequently validated using the Spin model checker. The safety of these
invariants was confirmed through an SMT solver, which checked if the inter-
section of the invariant ϕ with a user-defined set of unsafe states was empty.
To maintain a consistent comparison, both Daikon* and LIDO utilized identical
execution traces from Spin. This allowed for a fair evaluation of their respective
performances and effectiveness.
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Table 2 presents the results of our quality assessment for the learned in-
variant. In all cases, the likely invariants generated by LIDO with Learner were
confirmed as true invariants. This trend was similarly observed with Daikon,
which is known for producing overly conservative invariants. However, due to
speculative synthesis, LIDO achieved precise invariants than those generated by
Daikon, while maintaining a high level of soundness by monitoring system states.
Notably, in each case study, the synthesized likely invariant also aligned with the
system’s safety property, as indicated by ✓in Table 2. In contrast, the likely in-
variants derived from the combination of LIDO and Daikon were only able to
confirm system safety in one case study and failed in others (marked by ✗),
further highlighting Daikon’s tendency to generate overly conservative invariant
expressions. These empirical findings suggest that, with sufficient monitoring
time, LIDO can develop a robust understanding of system behavior.

We also modeled a smart contract for the Ethereum commodity market
in Spin to simulate execution and verify compliance with specifications. This
model plays a crucial role in enhancing the credibility of smart contracts by
detecting vulnerabilities, as errors can lead to significant financial losses due to
their immutable nature once deployed on the blockchain. Unlike static analy-
sis tools such as OYENTE, Osiris, and Gasper, which focus on pre-execution
analysis, our approach with LIDO allows for dynamic monitoring and synthesis
of system behavior in real-time. For example, we identified a likely invariant
fa Acc + su Acc + t Acc + sca Acc + scb Acc = invar0 , which pertains to the
total account balance and is recognized as a key safety property.

Additionally, LIDO discovered the likely invariant ((seen ≤ n ∧ tour ≤ max )
∨(tour > max ∧ seen ≤ n)) for the salesman system [23], which was verified by
Spin. However, the official specification stated seen < n ∨ tour > max , which
Spin did not confirm as a true invariant. This discrepancy revealed a flaw in the
official specification. By adjusting the assertion to seen ≤ n ∨ tour > max , the
system was successfully verified by Spin. Thus, through our tool LIDO, we not
only identified this bug but also provided a resolution.

5.3 Results for Evaluating the Scalabiilty and Efficiency

Learning likely invariants efficiently during runtime is critical for large-scale
distributed systems, which often operate continuously and cannot afford to be
paused for traditional offline verification methods. Given the complexity of non-
determinism inherent in distributed systems, the key question is whether LIDO
can effectively handle large-scale environments while minimizing its impact on
system performance.RQ3 explores whether LIDO can balance accuracy and effi-
ciency with minimal disruption to the system while providing meaningful invari-
ants. To benchmark the efficiency of LIDO, we measured the overhead of tracking
state change log information on Spin, which is the only interruption event on
Spin systems. We quantify the performance impact, or overhead incurred by
monitoring system of 10000 states. The overhead is defined in terms of resource
usage—such as CPU, memory, and I/O operations—that the monitoring process
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Table 2: Likely Invariant Quality Evaluation

System
Tightness Soundness Safety

LIDO Daikon* LIDO Daikon* LIDO Daikon*

Peterson(Binary processes) [23] ✓ ✗ ✓ ✓ ✓ ✗
Peterson(N processes) [23] ✓ ✗ ✓ ✓ ✓ ✗
Bakery [23] ✓ ✗ ✓ ✓ ✓ ✗
Hajek [23] ✓ ✗ ✓ ✓ ✓ ✗
Manna Pnuelli [23] ✓ ✗ ✓ ✓ ✓ ✗
Traffic Lights [13] ✓ ✗ ✓ ✓ ✓ ✗
Producer Consumer [4] ✓ ✗ ✓ ✓ ✓ ✗
Alternative Bit Protocol [23] ✓ ✗ ✓ ✓ ✓ ✗
Leader Election [23] ✓ ✗ ✓ ✓ ✓ ✓
UPPAAL Train/Gate [23] ✓ ✗ ✓ ✓ ✓ ✗
Salesman [23] ✓ ✗ ✓ ✓ ✓ ✗
Distributed Lock Server [30] ✓ ✗ ✓ ✓ ✓ ✗
Smart Contract(ETH) [49] ✓ ✗ ✓ ✓ ✓ ✗

consumes while recording and storing state information. By evaluating this over-
head, we seek to determine whether the monitoring system can effectively scale
to larger state spaces without introducing significant performance degradation.
Based on the results, the overhead ranges between 0.008 to 0.5 seconds, which
indicates that the monitoring system can efficiently handle detailed logging and
state observation without significantly affecting the system’s overall performance
or responsiveness. The outcomes for each distributed system are outlined in Ta-
ble 3. With an execution time (Tr) of at most or around 1s, and an approximate

ratio of observed to reachable states |V |
|R| ≈ 0 on large-sacle systems, our tool

scales effectively. Notably, even with the significantly low ratio, our tool can still
infer likelyInv. The data presented in Table 3 affirm the validity of RQ3. It is
important to note that while we were able to obtain likely invariants that were
sound invariants, LIDO does not guarantee soundness as we do not use a model
checker in the learning process. This approach aligns with traditional dynamic
techniques, such as Daikon, avoiding the use of model checking. Model checking
typically encounters the common issues of reduced generality and scalability.

6 Related Work and Conclusions

Runtime Monitoring. Runtime monitoring that leverages invariant inference
techniques supports various applications, from software verification to error de-
tection and enhancing system reliability. One of the pioneering and impactful
tools in this domain is Daikon, which dynamically identifies likely invariants
from program execution traces. Daikon has been extensively utilized for debug-
ging and improving testing and verification processes by generating invariants
that describe system behavior [5, 48].While Daikon has been integrated into a
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Table 3: Evaluation results on large-scale distributed systems Overhead: the in-
terruption time of system execution due to the monitoring event; Tr: average execution
time for each revision.

Distributed Program LoC
Shared
Vars.

No. of
Reachable
States (R)

|Visited|
|R|

Overhead(s)

(log info)

/10000 states

Tr(s)

Peterson(Binary Processes) [23] 20 3 16 1 0.111 0.012
Bakery [23] 24 2 8 1 0.125 0.084
Manna Pnueli [23] 29 3 18 0.61 0.092 0.015
Hajek [23] 68 2 256 0.13 0.115 0.015
Traffic Lights [13] 33 2 200 0.065 0.178 0.004
Producer Consumer [4] 37 4 1.03M 0.00044 0.135 0.049
Peterson(N Processes) [23] 45 3 19.5M 0.00018 0.088 0.070
Alternative Bit Protocol [23] 42 3 ∞ ≈ 0 0.154 0.013
Leader Election [23] 127 3 26K 0.0024 0.008 0.015
UPPAAL train/gate [23] 78 7 16.8M 0.000024 0.192 0.021
Salesman [23] 54 6 ∞ ≈ 0 0.012 0.033
Distributed Lock Server [30] 100 4 12.2K 0.015 0.503 0.024
Smart Contract(ETH) [49] 962 21 ∞ ≈ 0 0.172 0.022

runtime monitoring framework, as discussed in previous work [5], our research
indicates that the invariants produced by Daikon are often overly conservative.

Alongside Daikon, DIDUCE [20] also significantly influenced the field by em-
ploying template enumeration and checking invariants by mapping state infor-
mation to bits, where unchanged bits during execution are treated as invariants.
Building on these foundational efforts, Artemis [16] was introduced as an accel-
eration technique for dynamic monitoring, specifically applied to DIDUCE in C
programs, enhancing its efficiency. Recent studies have also focused on inferring
FSM (Finite State Machine) models [10, 40] to develop effective methodologies
and frameworks for evaluating specification miners, while ours focuses on logic
expressions. [6] Another study developed an SVM-based model through runtime
monitoring in cyber-physical systems. Despite the contributions of these early
approaches, they often face challenges related to the quality and generality of
the invariants produced. Our work aims to address these issues, improving both
the generality and quality of dynamic invariant generation.

Dynamic Invariant Synthesis. The main advantages of these works are scal-
ability and generality, while the main limitation is its sensitivity to the initial
pool of templates and its inability to learn interesting and non-trivial invariants,
including properties with disjunction [11]. A few invariant generators [25, 26]
build on Daikon. ContExt [26] combines static analysis of program properties
and dynamic analysis by Daikon to generate disjunctive constraints. The work
in [25] proposes an LLVM-based code instrumentation frontend on top of Daikon
to achieve invariant inference on multithreaded programs. Some solvers focus
on specific invariant types, such as LinearAirbitrary [52] for linear inequalities
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and algebraic equation invariants [43]. Other dynamic generation tools include
DIDUCE [20], DySy [8], Agitator [3], and Iodine [21], but they are often lim-
ited to certain languages, programs, or invariant types. Existing dynamic gen-
eration tools compromise applicability across diverse scenarios, lagging behind
static techniques. Our tool aims to retain generality like Daikon while producing
higher-quality invariants through a data-driven method, complementing existing
approaches by enhancing their strengths and addressing limitations.

Model Checker Assisted Invariant Synthesis. Early attempts at auto-
matic invariant generation used first-order theorem provers like Vampire [24,38],
limited by their scalability. Subsequent work includes approaches guarantee-
ing provably correct invariants and data-driven methods for likely invariants.
Counter-example guided invariant generation (CEGIR) combines inductive syn-
thesis and model checker verification, exemplified by ICE [18], ICE-DT [19], and
FreqHorn [14,15]. DistAI [51] and DuoAI [50] observe system executions but are
guided by a target property verified with IVy [32], potentially causing infinite
loops when the property does not hold. Techniques using theorem provers and
model checkers can be accelerated through additional verifier information [33]
or machine learning, such as Code2Inv [44], counter-example guided neural syn-
thesis [39], and ACHAR [27]. However, the cost of model checking and the rapid
growth of the space of possible invariants limit the complexity of systems to
which these techniques can be applied. On the other hand, our approach in
LIDO can thus be freely applied to complex systems.

7 Conclusion

Fundamental research in runtime monitoring has paved the way for innovations
in dynamic invariant generation and automated program verification. Our ap-
proach, LIDO, is an automatic and practical framework for learning likely in-
variants for distributed protocols. We utilize counterexamples and speculative
negative states to guide the invariant learning process. We also dynamically dis-
cover new atomic predicates from the observed states; essentially replacing the
parameters in the chosen grammar by values matching the observed states.

Our framework successfully learns likely invariants, preserving the with same
level of scalability as widely used tools such as Daikon, without being restricted
to any particular programming language, without relying on exhaustive tools
such as model checkers, or necessitating prior knowledge of the system’s safety
properties. Our method can provide three valuable outcomes for system devel-
opers: (1) a true overapproximation of the reachable states, which yields a valid
invariant learned purely from program traces and validated only through online
monitor- ing, (2) a summary of the most commonly observed states, where any
violation highlights rarely encountered system behaviors or anomalies, and (3)
potential verification of system safety. In future work, we will explore replac-
ing hte decision tree learning method with more advanced generative learning
models.
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