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Abstract. There has been a massive amount of work in algorithms to
verify and synthesize systems from temporal specifications. In contrast,
there has been less work devoted to the problem of helping engineers to
understand how and why their systems exhibit certain behaviors. Such
understanding is important for them to debug, validate, and modify
their implementations in response to changing needs. In this paper, we
present one possible formalization of this problem as the task of recovering
specifications that locally describe the behavior of individual parts of the
circuit, given LTL specifications that globally describe the behavior of
the entire circuit. We study the theoretical properties of these temporal
subspecifications, and show that they are not always expressible in LTL,
but can always be described by ω-regular languages. We show that our
algorithm can efficiently generate compact subspecifications when applied
to benchmarks from the SYNTCOMP 2023 competition. Finally, through
a user study, we show that subspecifications improve the accuracy of
engineers by a factor of 17 when answering questions about these circuits.

1 Introduction

This paper is about helping engineers to understand and debug sequential cir-
cuits. Despite a massive amount of research on verification [6,29,2,11], synthe-
sis [28,17,25] and repair [19,12], there has been comparatively less attention given
to the task of aiding engineers in debugging, validating and optimizing their
designs. There is admittedly some work on helping engineers automatically derive
temporal specifications from their code [23,27], translating these specifications
into natural language descriptions [3], and automatically deriving LTL specifica-
tions from natural language text [9,10]. However, these are focused more on the
tasks of specification engineering, rather than on helping engineers develop and
validate beliefs about different parts of their system.

Indeed, as we will see in our user study, participants struggle to explain the
operation of even relatively simple sequential circuits. Although it is easy to
obtain execution traces of these systems, design, modification and debugging
fundamentally involves reasoning about counterfactual (“what if?”) behaviors of
different parts of the system.

While studying a similar problem in the context of SyGuS program synthesiz-
ers, Nazari et al. [26] proposed the concept of subspecifications—i.e., automatically



derived specifications of individual subexpressions—as a way of locally explaining
what different parts of a loop-free program should do. Our present paper may be
alternatively viewed as asking whether a similar notion of subspecifications can
be developed in the context of reactive systems.

In our setting, the subspecification corresponds to the set of valid signals that
can be produced by individual latches so that the rest of the system satisfies
the desired global specification. This therefore provides a way for engineers to
characterize the space of valid behaviors of different components, while abstracting
away surrounding parts of the system.

The first question that arises when extending the idea of subspecifications to
sequential circuits and temporal specifications involves asking what an appropriate
language for expressing these temporal subspecs would even be. As we will see
in Section 4, it is easy to design circuits where the subspecs for individual
components are inexpressible in LTL, even though the global circuit behavior was
specified as an LTL formula. We will then show that these subspecs are always
ω-regular and may be conveniently expressed as Buchi automata.

We will report on a user study showing that subspecifications massively help
users in a range of debugging and validation tasks (improving their response
accuracy by 17×). Finally, we will present an experimental evaluation in which
we observe that our algorithm can rapidly derive simple subspecs.

2 Formally Defining Subspecifications

We adapt the following example from the website of the ltlsynt tool,1 distributed
as part of the Spot framework [8]. Say an engineer wishes to synthesize a circuit
that accepts two Boolean-valued signals i and j as input, and produces an output
signal x such that x eventually drops from true to false iff i and j are both
true in the initial time step:

(i ∧ j) ⇐⇒ F(x ∧ X¬x). (1)

In response, ltlsynt synthesizes the controller shown in Figure 1, both as a
state machine and the corresponding and-inverter graph [1,16].

At this point, say the engineer wishes to understand the purpose of the latch
labelled b, with the goal of either optimizing, debugging, or otherwise modifying
the circuit. As a first attempt, they might draw a state machine describing the
value produced by the latch in response to the history of inputs i and j. See
Figure 2a. We observe (unsurprisingly) that this state machine is remarkably
similar to the original controller from Figure 1a.

Note however, that although this machine accurately describes the output
of latch b, there is a class of questions that it leaves unresolved: For example, if
the engineer wishes to optimize or modify this part of the circuit, they would be
interested in not just its current behavior, but all possible behaviors of the latch.
They would similarly interested in possible legal alternative behaviors if changing

1 https://spot.lre.epita.fr/ltlsynt.html
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Fig. 1: The controller generated by Spot (ltlsynt) for the specification in Equa-
tion 1 (1a) and its corresponding and-inverter graph (1b). The numbered circles
represent AND gates, and the smaller shaded circles represent inverters. Rectan-
gles represent the input and output sides of latches, and occur in pairs, indicated
as Xin and Xout respectively. Each latch represents a unit time delay and is
initialized to false. The engineer wishes to know the purpose of the latch b.
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Fig. 2: (2a) Behavior of the latch b from the circuit in Figure 1b. Observe its
similarity to the original controller from Figure 1a. (2b) Description of all possible
legal behaviors of the latch—i.e., its subspecification—so that the entire circuit
satisfies Equation 1. Notice that this machine reveals additional possibilities that
are not exhibited by the current implementation.



requirements or faults elsewhere in the circuit need to be mitigated by repairs
in this part. Therefore, instead of inquiring about the current behavior of latch
b, we are interested in the question: What values should the latch b produce, so
that the rest of the circuit satisfies the specification in Equation 1?

We can show that b can be replaced by any signal that satisfies the property:

(i ∧ j) ⇐⇒ F(i ∧ j ∧ ¬b). (2)

This formula may be equivalently viewed as the Buchi automaton in Figure 2b.
Because the future values of i and j are unconstrained, it follows that whenever i
and j are true in the first time step, b must also produce the initial value false.
Its output for the rest of time is unconstrained. Alternatively, if either i or j were
initially untrue, then it is obligated to obey the constraint G(i ∧ j =⇒ b). Our
central goal with the idea of subspecifications, that we will now formalize, is to
provide a uniform answer to counterfactual questions of this kind.

Background: Sequential circuits, linear temporal logic (LTL), and Buchi automata.
Sequential circuits will form our objects of study in this paper. In brief, a sequential
circuit C = (I,O, L,f) is specified by finite sets of Boolean-valued input and
output signals, I = {i1, i2, . . . , im}, O = {x1, x2, . . . , xn}, a finite set of latches,
L = {a1, a2, . . . , al}, and associated update functions, fv : Boolm+l → Bool, for
each v ∈ O ∪ L.

The inputs supplied to the circuit may be modeled as an infinite sequence of
valuations, σ = σ1, σ2, . . . , of each of the input signals I. The circuit responds
by iteratively computing the values of its latches, ρ, and output signals, τ , as
follows:

ρ0(a) = false,

ρi+1(a) = fa(σi, ρi), and

τi(x) = fx(σi, ρi),

for a ∈ L, x ∈ O, and i ∈ N. For example, the circuit in Figure 1b may be
represented using the set of update functions:

an+1 = (¬in ∧ an ∧ ¬bn) ∨ (in ∧ ¬jn ∧ an ∧ ¬bn) ∨ (in ∧ jn ∧ ¬bn),
bn+1 = (¬in ∧ ¬an) ∨ (in ∧ ¬jn ∧ ¬an) ∨ (in ∧ jn ∧ ¬an ∧ bn), and
xn = ¬an.

 (3)

We specify properties of these sequential circuits using formulas in LTL. Recall
that an LTL formula ϕ is a production of the grammar:

ϕ ::= true | false | v | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | Gϕ | ϕ1 U ϕ2,

where v ∈ I ∪O ∪ L. The interpretation of these formulas over infinite traces is
standard. We refer the reader to Clarke et al.’s textbook on model checking [5].

One may alternatively specify properties of infinite signals using Buchi au-
tomata. A Buchi automaton is a structure M = (Q,Σ,∆, q0, F ), where Q is a



finite set of states, Σ is a finite alphabet (in our case, most commonly Boolm+n),
∆ ⊆ Q×Σ×Q is the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is
the set of accepting states. The machine in Figure 2b is an example. We say that
the machine accepts an ω-string w = w1, w2, . . . if there exists a corresponding
run q0 →w1 q1 →w2 q2 →w3 · · · in which some state qf ∈ F occurs infinitely
often. We refer to the language that M accepts as L(M) ⊆ Σω. Once again, we
refer the reader to [5].

Sequential subspecifications. Let C = (I,O, L,f) be a sequential circuit, and let
ϕ be an LTL specification with free variables from I ∪O. Let b ∈ L be a latch
that the engineer wishes to investigate. We can now use C to construct a new
circuit:

C|b = (I ∪ {b}, O, L \ {b},f \ {(b, fb)}).

Informally, this amounts to promoting b, currently represented by a latch, to the
status of a new input, while leaving the rest of the circuit unchanged. We say
that an LTL formula ψ is a subspecification of the latch b with respect to the
global specification ϕ if for each sequence of inputs σ̃ supplied to C|b, we have:

σ̃ |= ψ ⇐⇒ (σ, τ ) |= ϕ, (4)

where τ is the corresponding sequence of outputs produced by C|b, and σ is the
projection of σ̃ obtained by eliminating the values of b.

Note 1. 1. Informally : The subspec ψ specifies all possible alternative values
that could have been produced by b, so that the rest of the circuit C|b still
satisfies ϕ.

2. Also note that we do not require the initial circuit C to itself satisfy ϕ. This
flexibility is useful when engineers are concerned with problems of debugging
and repair, as we will see in the example in Section 3.1.

3. By considering sequential circuits and temporal properties rather than state-
less expressions, the definition of subspecs in Equation 4 is a strict general-
ization of the idea initially developed by [26].

Ideally, one would like to express the specification and subspec in the same
language. However, it is easy to construct circuits where the subspec is inexpress-
ible as an LTL formula. We will see an example in Section 4.1. We will therefore
primarily be interested in situations where the subspec is represented as a Buchi
automaton. We say that a Buchi automaton M with alphabet Σ = Bool|I∪{b}| is
the subspecification of b with respect to ϕ if:

σ̃ ∈ L(M) ⇐⇒ (σ, τ ) |= ϕ,

where (as before) τ is the sequence of outputs produced by C|b, and σ is the
sequence of valuations obtained from σ̃ by projecting out the values of the “real”
inputs, i ∈ I.



Paper outline. In Section 3, we will present two additional examples illustrating
the utility of subspecs for validation and debugging. Then, in Section 4, we will
present an algorithm to automatically derive these subspecifications. Finally, in
Sections 5 and 6, we will focus on empirically validating their usefulness and our
effectiveness in producing compact subspecs.

3 Example Applications

Our examples in this section will be drawn from the Reactive Synthesis Compe-
tition, SYNTCOMP 2023 [17]. Like for the example in Section 2, automatically
synthesized controllers provide a convenient source of specifications and imple-
mentations that are tricky to comprehend.

3.1 Debugging Circuits

We consider the example of lilydemo12.tlsf [18]. The original goal was to
synthesize a controller that maps a pair of input signals, i, j, to a pair of output
signals, x and y, such that:

G¬x ∨ G(i =⇒ F y) ∨ G(j =⇒ Fx).

In response, Spot produces a controller implemented using the following two-latch
circuit:

an+1 = ¬jn ∧ ¬an ∧ ¬bn,
bn+1 = (jn ∧ ¬an) ∨ (¬an ∧ bn) ∨ (an ∧ ¬bn),
xn = (¬jn ∧ an ∧ ¬bn) ∨ (¬an ∧ bn), and
yn = (in ∧ ¬an) ∨ (in ∧ ¬bn).

 (5)

Assume, for the sake of example, that there was a transcription error, and the
outputs were incorrectly calculated as follows:

x′n = ¬xn︸︷︷︸ and y′n= (¬in︸︷︷︸∧¬an) ∨ (¬in︸︷︷︸∧¬bn). (6)

In other words, two mistakes were made: the output x was incorrectly negated,
and the input i was incorrectly negated while being used to compute y. Note
that these mistakes correspond to two bit flips in the AIGER-encoded circuit.

At this point, the engineer might wish to explore ways of repairing the system.
Among other questions, they might wonder whether its functionality can be
restored by changing the values produced by latch b. Although one might draw
the state machine corresponding to the current computation of b in a manner
similar to what we did in Figure 2a—see Figure 3a—we note that this is useless,
because we are uninterested in what b currently does, and instead interested in
what the latch should now be doing.

As part of our user study in Section 5, we asked a group of students to suggest
possible ways of repairing the circuit by modifying the behavior of b. Notably,
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Fig. 3: (3a) The controller for the latch b in the circuit of Equation 5. (3b) A
description of all possible behaviors of the latch b so that the rest of the faulty
circuit from Equation 6 nevertheless satisfies the specification in Equation 3.1.

without additional assistance, only one participant of nine was able to solve the
task, and required approximately 8 minutes to identify a fix.

Alternatively, using our subspecification derivation algorithm from Section 4.2,
one discovers that the latch can be replaced with any component all of whose
behaviors are accepted by the Buchi automaton shown in Figure 3b. Observe
now that the erroneous circuit would satisfy the specification if b were to simply
be replaced with a signal that produces the constant value true. By replacing
value of b in Equation 5 with this new signal, b′n = true, one observes that it
results in the new sequence of output values x′′n = false and y′′n = ¬in. This
repaired implementation would therefore satisfy the specification by fulfilling its
leftmost term, G¬x.

Eight of the 9 participants in the intervention group in our user study
suggested this method of fixing the system. The remaining participant identified
the following (only slightly more complicated) fix. They observed that state
q3 was the only non-accepting state in the subspec automaton in Figure 3b
and pointed out that all transitions leading to this state would be disabled if
b′′n = ¬in. Plugging in this fix into the faulty update expressions in Equation 6 and
simplifying reveals that, in this case, y′′n = in, so that the repaired implementation
works by fulfilling the second term in the specification, G(i =⇒ F y).



3.2 Validating Sequences

We now look at example72.tlsf from the SYNTCOMP 2023 benchmark suite.
Here, we are interested in a two-input (i, j) two-output (x, y) controller such
that:

G(¬x ∨ ¬y) ∧ G(i =⇒ x ∨ Xx) ∧ G(j =⇒ y ∨ X y). (7)

The two-latch circuit in question is specified by the following update expressions:

an+1 = (in ∧ jn ∧ ¬an) ∨ (¬in ∧ jn ∧ ¬an ∧ bn),
bn+1 = an ∧ ¬bn ∧ in,
xn = (¬in ∧ jn ∧ ¬an ∧ bn) ∨ (¬in ∧ ¬jn ∧ ¬an) ∨ (in ∧ ¬an), and
yn = (in ∧ ¬bn ∧ an) ∨ (¬in ∧ jn ∧ ¬bn) ∨ (¬in ∧ ¬jn ∧ an ∧ ¬bn).

 (8)

As part of their validation process before incorporating this system in their
designs, the engineer might simulate the controller under a variety of test inputs.
We show an example trace in Figure 4a. In this situation, they observe that both
latches a and b uniformly remain at false. They ask whether the circuit still
works if b is forced to be constantly true. Questions like this might conceivably
also arise when they are modifying the circuit and running test cases.

i

j
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x

y

(a) (b) (c)

Fig. 4: (4a) Original behavior of the system resulting from signal i turning off and
j turning on for one clock cycle in the second time step. The engineer wonders
why the circuit would not work if b were to produce the constant value true.
(4b) The values produced by a′, x′ and y′ in this counterfactual scenario. This
execution trace fails the specification because y′ never goes high in response to
the impulse on j. (4c) Analyzing the subspec for b reveals that pushing it to
false in the third time step would restore global correctness.

Modifying the behavior of latch b in this manner would affect the computation
both of the remaining latch a and of the outputs x, y, resulting in the alternative
execution trace shown in Figure 4b. It can be seen that this trace does not satisfy
the specification in Equation 7.

We now observe that subspecifications can provide greater insight into the
causes for this failure. We show the automatically calculated subspec automaton
in Figure 5. It turns out that the new trace for b causes this machine to pass



through the sequence of states q0 → q0 → q1. At this point, the run would
terminate because both outgoing transitions from q1 are disabled. This analysis
allows us to localize the fault within this alternative trace to the third time step.
Pushing b to false for one clock cycle at this point would cause the resulting
trace to once again satisfy the global specification. See Figure 4c.
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(i ∧ j) ∨ (j ∧ b)

¬i ∧ ¬b

i ∧ ¬b

¬j

(i ∧ j) ∨ (j ∧ b)

Fig. 5: A description of all possible legal behaviors of the latch b so that the
circuit from Equation 8 satisfies Equation 7.

4 Expressibility and Automatic Derivation of Subspecs

The principal contribution of this paper over [26] is in extending the idea of
subspecifications from the setting of stateless, loop-free expressions to the more
general setting of sequential circuits. Naturally, we need to reconsider questions
related to expressiveness and develop new algorithms to automatically derive
these subspecs (if they exist). Unfortunately, it is easy to show that even if the
global specification is provided as an LTL formula, the subspecification of a
latch need not itself always be expressible using LTL. See Theorem 1. On the
other hand, in Section 4.2 we show that the subspec is always expressible as a
Buchi automaton. Our proof of this second result also provides an algorithm to
automatically derive these subspecifications.

4.1 Inexpressibility of Subspecifications as LTL Formulas

We start with the simple two-latch circuit shown in Figure 6a. Each latch flips
its value from the previous time step:

an+1 = ¬an and bn+1= ¬bn. (9)

Recall that both latches are initialized as a0 = b0 = false. The circuit calculates
its single output bit as follows:

xn = an ∨ ¬bn.

Naturally, this circuit always produces the output true, thereby satisfying Gx.
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Fig. 6: (6a) Representation of the circuit from Equation 9 as an and-inverter
graph. (6b) Subspec of the latch b with respect to the global specification, Gx.
Observe that the output value is unconstrained in odd-indexed time steps.

It is easy to see that for this global property, Gx to hold, the latch b must
produce the value false in even time steps, t = 0, 2, 4, . . . . Its value in odd time
steps, t = 1, 3, 5, . . . , is unconstrained. This subspecification may be represented
using the Buchi automaton in Figure 6b, but is famously inexpressible as an LTL
formula [31]. It follows that:

Theorem 1. There is no LTL formula which describes the subspecification of
latch b in the circuit of Figure 6a and with respect to the global specification, Gx.

4.2 Automatically Deriving Subspecs as Buchi Automata

We will now describe an algorithm to obtain the subspecification of a latch b
when it is requested as a Buchi automaton. Recall that the problem is to replace
the latch with a new “magic” input signal, and determine all possible sequences
of inputs that can be supplied to this new circuit C|b so that the execution of
the rest of the circuit satisfies the given global specification ϕ. For the purpose
of illustration, we will continue with the example from Section 2.

As a first step, we write down an LTL formula that describes all possible
executions of the circuit C = (I,O, L,f):

χ(C) =
∧
x∈O

G(x ⇐⇒ fx(I, L)) ∧
∧
a∈L

(¬a ∧ G(X a ⇐⇒ fa(I, L)). (10)

This formula, χ(C), ranges over the free variables I ∪O ∪ L, and functions in a
manner similar to the Tseitin transform [30]:

Lemma 1. A sequence of valuations (σ, τ ,ρ) of I ∪O ∪ L satisfies χ(C) iff the
circuit C produces the sequence of outputs τ and latch values ρ when provided
with the input sequence σ.



Observe that χ(C|b) describes all possible executions of the promoted circuit C|b.
For example, for the circuit in Equation 3, χ(C|b) would be:

G(x ⇐⇒ ¬a)∧¬a∧G(X a ⇐⇒ (¬i∧ a∧¬b)∨ (i∧¬j ∧ a∧¬b)∨ (i∧ j ∧¬b)).

We are interested in executions of C|b that also satisfy ϕ. Naturally, the
formula of interest is χ(C|b)∧ϕ. This formula can be readily transformed into an
equivalent Buchi automatonMC,b,ϕ. Figure 11 in Appendix A shows the resulting
construction when applied to our running example. The main outstanding chal-
lenge is that χ(C|b)∧ϕ (and therefore MC,b,ϕ) ranges over all variables, I ∪O∪L,
while the desired subspec in Figure 2b only relates the values of the inputs I and
the latch b that is currently being investigated.

Our key insight is that because the circuit is deterministic, the values of the
remaining latches, a ∈ L \ {b} and outputs x ∈ O can be uniquely determined
from the history of values of I ∪ {b}. Let MC,b,ϕ = (Q,Σ,∆, q0, F ), where

Σ = Bool|I∪O∪L|. We construct a projected-down automaton,

M↓
C,b,ϕ = (Q,Σ↓, ∆↓, q0, F ), (11)

by selecting the fields in Σ corresponding to I ∪ {b}, so that Σ↓ = Bool|I∪{b}|

and

∆↓ = {(q, a↓, q′) | (q, a, q′) ∈ ∆},

and where a↓ ∈ Bool|I∪{b}| is the symbol obtained by eliminating the unnecessary
fields of a ∈ Bool|I∪O∪L|. We establish a correspondence between the executions
of MC,b,ϕ and the executions of M↓

C,b,ϕ:

Lemma 2. Whenever the ω-path π = q0 →a0 q1 →a1 q2 → · · · is accepted by

MC,b,ϕ, the corresponding path π↓ = q0 →a↓
0 q1 →a↓

1 q2 → · · · is also accepted by

M↓
C,b,ϕ. Conversely, for every path π↓ accepted by M↓

C,b,ϕ, there exists a path π

accepted by MC,b,ϕ such that π↓ is the projection of π.

Proof. The forward direction is immediate. In the converse direction, recall that
every transition (q, a↓, q′) ∈ ∆↓ corresponds to some transition (q, a, q′) ∈ ∆ of

MC,b,ϕ. For each transition qi →a↓
i qi+1 in π↓, arbitrarily pick ai ∈ Σ so that

(qi, ai, qi+1) ∈ ∆. It must be the case that π = q0 →a0 q1 →a2 q2 → · · · is a

valid path throughMC,b,ϕ. Furthermore, becauseM↓
C,b,ϕ preserves the acceptance

conditions, it must be the case that π is also accepted by MC,b,ϕ, thus completing
the proof.

Combining Lemmas 1 and 2, we have:

Theorem 2. For each circuit C = (I,O, L,f), specification ϕ, and latch b ∈ L,

the Buchi automaton M↓
C,b,ϕ is a subspecification of b with respect to ϕ.



Implementation details. (a) We use Owl [21] for the LTL-to-Buchi automaton
translation, and the autfilt tool in Spot [8] for simplifying the resulting au-
tomata. (b) We use Spot to translate transition guards into DNF form. The
minterms of this formula can be easily subject to the downward projection opera-
tion. (c) Although the definition of subspecs in Section 2 focused on latches, our
implementation more generally allows for the computation of subspecs for any
component in the AIGER-encoded circuit. Defining subspecs for these components
is an easy generalization.

5 Empirically Measuring the Utility of Subspecifications

The first part of our evaluation consisted of a user study to determine whether
subspecifications were helpful to engineers. Our goal was to answer the following
research questions:

RQ1. Do subspecs help users in distinguishing valid and invalid execution traces?
RQ2. Do subspecs help users in explaining the purpose of individual components?
RQ3. Do subspecs help users in repairing faulty circuits?

5.1 Participants, Tasks, and Study Structure

Participant selection and screening process. The study was conducted after ob-
taining IRB approval. We recruited 18 graduate students (2 Masters and 16 Ph.D.
students) from the Computer Science (CS), Electrical Engineering (EE), and
Industrial and Systems Engineering (ISE) departments of two prominent Ameri-
can and Canadian universities. These participants had a range of specializations,
including optimization algorithms, human-computer interaction, machine learn-
ing and natural language processing, software engineering, MEMS and robotics,
computer networking, and theoretical CS.

We started by providing the participants with an introduction to the study,
and briefly introducing them to temporal logic and the idea of subspecifications.
We then administered a screening quiz with 5 questions to ensure that participants
had a baseline level of understanding of these background ideas. All participants
received perfect scores in the screening quiz, and were therefore included in the
main study.

Tasks and study structure. The study consisted of three tasks. The first task
was based on the specification-implementation pair discussed in Section 3.2. It
consisted of 4 questions in which participants were asked to predict whether a
presented counterfactual trace would cause the rest of the circuit to produce
an output trace that satisfied the specification. We also asked participants to
justify their responses. The second task built on our introductory example in
Section 2, and asked participants to explain, in natural language, the constraints
that specific parts of the circuit must satisfy. The last task involved the faulty
system discussed in Section 3.1. We pointed participants to different parts of



the circuit, and asked them to suggest fixes. We also asked them to justify their
responses if implementing a repair was impossible.

The study was formulated as a repeated measures design, i.e., one in which
each participant attempted at least one task with access to subspecs and at
least one other task without access to subspecs. For each task, participants
were randomly assigned to either the intervention or control arms, with exactly
9 participants attempting each task under each condition. The screening quiz,
study materials, and (anonymized) participant responses will be included as part
of our artifact.

All authors of this paper independently graded participant responses. The
pairwise correlation coefficients between our grades were 0.85, 0.88 and 0.90
respectively. We present our average grades (indicating our assessment of their
accuracy) in Figure 7.
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Fig. 7: Accuracy of participant responses and distribution of time needed to
complete each of the study tasks. Questions 1.1–1.4 assessed the ability of
participants to validate counterfactual traces, Questions 2.1–2.3 asked them to
explain what different components should do, and Questions 3.1 and 3.2 assessed
their ability to repair faulty circuits.

5.2 RQ1: Distinguishing Valid and Invalid Execution Traces

We draw our conclusions from Questions 1.1–1.4 of the user study. We expected
each response to include both a summary Boolean-valued judgment (“Counter-
factual trace leads to valid behavior” vs. “Counterfactual trace leads to erroneous
behavior”) and a justification.

Two trends are obvious from Figure 7a: Participants without access to subspecs
were broadly unsuccessful at the task while participants with access to subspecs
were significantly more effective. With and without our intervention, average
participant accuracy was 94% and 3% respectively.



In the baseline-without-subspec condition, participants would have had to
first mentally simulate the circuit from the provided update equations, and
then determine whether the induced response satisfied the provided specification.
Anecdotally, given the complexity of the update equations, most participants
were unable to even simulate the circuit. In the post-study debrief, several of
these participants complained about the complexity of the update equations.

Accordingly, we observed two distinct response patterns from the control
group: The first subgroup opted to skip the question after spending a considerable
amount of time (Notice the massively larger length of time that these participants
spent on Task 1), while the second subgroup provided guesses without sound
reasoning or justification. We also noticed that participants gradually became
tired, so their response accuracy for Q1.1 was noticeably higher than for the
remaining questions.

In contrast, the subspec eliminated the need to mentally simulate the circuit.
Participants simply had to trace the behavior of the subspec automaton in
response to the inputs and counterfactual latch values. The subspec therefore
allowed the participants to visualize and locally reason about the execution trace,
without having to engage with the rest of the circuit’s components.

5.3 RQ2: Explaining the Purpose of Individual Components

Now, we draw our conclusions from observing participant responses to Ques-
tions 2.1–2.3. Specifically, these questions asked participants to describe the
required behavior of individual latches so that the rest of the circuit satisfied the
specification. As a point of elaboration, we asked participants for the considera-
tions that designers must keep in mind while modifying the implementation.

Notice that, unlike the first task (which admitted a clear solution strategy
even without access to subspecs,) this second task was open-ended. Here, most
participants in the control group confessed to not even knowing where to start.
Participants who had access to subspecs tended to approach the problem by
performing a case analysis on the subspec automaton.

The components of interest in Questions 2.1 and 2.2 admitted relatively
simple subspecs which only constrained their behavior in the initial time step.
Consequently, all participants had a relatively higher accuracy for these two
questions. In contrast, Question 2.3 was exactly the setting of latch b that we
examined while initially motivating subspecs in Section 2.

In this case, subspecs made some behaviors obvious: In particular, if i ∧ j
was false in the initial time step, then b was required to satisfy G(i ∧ j =⇒ b).
Similarly, if i ∧ j ∧ ¬b held in the initial time step, then all requirements were
lifted for the rest of time. On the other hand, if i∧j was true in the first time step,
and b also assumed the value true, then the subspec automaton would transition
to the state s1, which did not admit a winning strategy. It was therefore crucial
for the latch b to produce the initial value false when initially i ∧ j. Four of the
nine participants who had access to subspecs (and nobody in the control group)
were able to completely articulate this requirement.



5.4 RQ3: Repairing Faulty Circuits

Finally, we focus on our observations of participant responses to Questions 3.1
and 3.2. Both these questions involve the specification-implementation pair from
Section 3.1.

Once again, participants in the control group complained about having
insufficient information to complete the task. We also noticed them becoming tired:
after spending considerable effort and still being unsuccessful in Question 3.1,
some of them chose to skip Question 3.2.

While designing the user study, we expected this to be the hardest of the
three tasks. We were surprised that participants with access to subspecs achieved
an average score of 93%, and needed the least amount of time among all three
tasks. Another notable observation was that the circuit could not be repaired by
modifying the component highlighted in Question 3.2. We show its subspec in
Figure 8. For this question, the average score of participants in the intervention
group was 92%, indicating that most of them successfully identified and justified
the unrepairability of component m.
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¬j ∨m

j ∧ ¬m

¬j
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i ∧ j

¬i
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¬i
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Fig. 8: Subspecification of a component m of the circuit from Equation 6 with
respect to the specification in Equation 3.1.

6 Effectiveness of the Subspec Generation Procedure

Next, we measured the effectiveness of our algorithm for deriving simple subspec-
ifications. We were interested in two research questions:

RQ4. Does the algorithm generate “simple” subspecs?
RQ5. How long does the procedure take to construct these subspecs?

6.1 Benchmarks and Experimental Setup

Benchmarks. We ran Strix [25], the winner of the SYNTCOMP 2023 Competition
on all benchmark specifications used in the competition. We collected the gener-
ated controllers and corresponding circuit implementations. We set a 5 minute
timeout on the synthesizer, within which the solver was able to successfully
synthesize 635 controllers. Recall from the discussion in Section ?? that our



implementation is able to calculate subspecifications for not just latches, but
more generally, for any component in an AIGER-encoded circuit. We focused on
controllers which had less than 100 such components, resulting in 545 specification-
implementaiton pairs, and which collectively contained 13,208 components. We
ran the subspecification generation tool on each of these components with a
timeout of 10 minutes per run. At the end of this data collection process, we had
access to subspecs for 11,453 components.

Experimental setup. We ran our experiments on a four-year old workstation
machine with an AMD Ryzen 9 5950X CPU and 128 GB of memory running
Ubuntu 21.04. We expect similar results to be obtained on most recent desktop
and laptop computers.

6.2 RQ4: Effectiveness in Simplification

We measured the sizes of the generated subspecs. As such, one would expect that
the size of these subspecs is dependent on the complexity of the specification or
the controller being investigated. Therefore, in Figures 9a and 9b, we present
the distributions of subspec size (# of states) when compared to the size of
the original specification (# of AST nodes) and the size of the implementation
respectively.
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Fig. 9: (9a) Distribution of the size of the generated subspec (measured as the
number of states in the subspec automaton), in comparison to the size of the orig-
inal specification (measured as the number of AST nodes). The red colored bar
indicates cases where the subspec size was > 10× of the specification. (9b) Dis-
tribution of subspec size when compared to the size of the controller (measured
as the number of components in the AIGER implementation). (9c) Effectiveness
of the subspec simplification pass described in Section ??.

We notice that as many of 46% of the components in question admit subspecs
that are less than 20% of the size of the original specification. Furthermore, in
75% of the cases, the subspec is smaller than the original specification. In only
7% of the cases is the subspec > 10× of the size of the original specification.
We make similar observations when comparing the size of the subspec to the



size of the circuit that surrounds the component of interest: in this case, the
corresponding numbers are 22%, 55%, and 6% respectively. Of course, all these
comparisons need to be interpreted with some care, because of the different
units of measurement associated with the subspec and the original specification /
implementation.

Nevertheless, we may broadly conclude that our algorithm is effective in
generating simple subspecifications. We also note that we post-process the subspec
initially produced by our procedure using the automata simplification routine
implemented in Spot’s autfilt tool. Figure 9c shows measurements of the
effectiveness of this simplification procedure. It achieves a ≥ 50% compression in
50% of all cases. This appears to be because most of the states in the originally
constructed automaton, MC,b,ϕ reason about other parts of the circuit, and are

useless after the downward projection into M↓
C,b,ϕ. We therefore believe that such

post-processing passes are important in obtaining simple subspecs.

6.3 RQ5: Time Needed to Derive Subspecifications

We present measurements of the running time of the subspec generation procedure
in Figures 10a and 10b: These figures respectively describe the absolute running
time and a comparison to the time needed to synthesize the original controller.
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Fig. 10: Cactus plot of the subspec derivation time (10a) and comparison to the
time needed for originally synthesizing the circuit (10b).

Note that 57% of cases require less than a second for subspec generation,
and we are faster than the original synthesis run in 66% of cases. Only 5% of
the cases require long periods of waiting. Our long-term goal is that engineers
consult subspecs in an interactive manner while designing their systems. The
current performance of the algorithm seems adequate for this purpose.



7 Related Work

Verification and synthesis of reactive systems. Automatic verification and syn-
thesis are foundational and widely studied problems [4]. Many algorithms and
tools have been proposed [25,11], and annual competitions are conducted to
identify and promote advances [2,17]. By identifying bugs and issuing certificates
of correctness, verification tools greatly help in designing reliable systems. Indeed,
one of the important attractions of model checking is its ability to generate
counter-example traces when the system fails to satisfy the desired property [7].
However, these counter-example traces describe executions of the entire system,
and are not immediately helpful in localizing the fault or in devising repairs.
As such, these are not questions about the current behavior of the system, but
rather, of its desired behavior.

Deriving and explaining LTL specifications. There has also been some concern
about the inaccessibility of formal specification languages to engineers working
in applied domains such as robotics, and who are themselves not necessarily
experts in verification technology. To address these concerns, there has been some
amount of work in making these formalisms more accessible: for example, by
automatically deriving temporal logic specifications from system models [23,27],
translating LTL formulas into natural language descriptions [3], and using various
kinds of translation technology to convert requirements expressed in natural
language into LTL, STL, MTL, and other kinds of temporal logic formulas [9,10].
Of course, these techniques focus more on issues of understanding and obtaining
good specifications, rather than on the task of explaining the mechanics of the
system under consideration.

Modular verification and local reasoning. The key idea in this paper was to
reverse-engineer (temporal) specifications for individual components in a com-
posite system. As such, this task is intimately tied to the problem of modular
verification [13]. The promise of modular verification is that proving and compos-
ing component-level properties can lead to more scalable verification. In a sense,
our hope with subspecifications is the same: that engineers will find properties of
specific parts intuitive and easy-to-reason about when isolated from the rest of
the system. Of course, one challenge with modular verifiers is inferring properties
of individual modules. Similar challenges might also arise when applying subspecs
to very large systems.

Program comprehension and repair. Subspecifications are also closely connected
to the problem of program repair. Most simply, the behaviors exhibited by the
program patch must satisfy the corresponding subspecification. Program repair
has been extensively studied, both in the setting of large-scale code [24,22] and
in the setting of reactive systems [15]. Another notable body of research focuses
on program comprehension: one approach involves sophisticated techniques to
visualize program executions [14], while the other—for e.g., the famous Whyline
tool [20]—once again involves counterfactual questions.
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A Expressibility and Automatic Derivation of Subspecs
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Fig. 11: Buchi automaton MC,b,ϕ for the latch b in the circuit described in
Equation 8, and with respect to the specification of Equation 7. The transition
guards are provided by g01 = i ∧ j ∧ ¬a ∧ b ∧ x, g02 = i ∧ j ∧ ¬a ∧ ¬b ∧ x,
g03 = (¬a ∧ ¬i ∧ x) ∨ (¬a ∧ ¬j ∧ x), g11 = (¬a ∧ ¬i ∧ x) ∨ (¬a ∧ ¬j ∧ x) ∨
(¬a ∧ b ∧ x), g12 = i ∧ j ∧ ¬a ∧ ¬b ∧ x, g22 = a ∧ ¬b ∧ ¬x, g24 = a ∧ b ∧ ¬x,
g33 = (¬a ∧ ¬i ∧ x) ∨ (¬a ∧ ¬j ∧ x) ∨ (¬a ∧ b ∧ x), g42 = ¬a ∧ ¬b ∧ i ∧ j ∧ x, and
g44 = (¬a ∧ ¬i ∧ x) ∨ (¬a ∧ ¬j ∧ x) ∨ (¬a ∧ b ∧ x) respectively.
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