
CSCI 599: An Introduction 
to Programming Languages

Welcome and Introduction

Mukund Raghothaman

Fall 2020



Programming Languages

• System of communication used by a country or community

2



Programming Languages

• Notation for specifying a computation

3



Why Study Programming Languages?

• Programming is not hard

• Programming well is very hard

• Linguistic relativity: Structure of a language affects its speaker’s 
worldview (Controversial)

• Programming languages shape programming thought
(Dogma for the purposes of this course)

4

https://www.wnycstudios.org/podcasts/radiolab/segments/211213-sky-isnt-blue



Our Goals in this Course

• Make you better programmers …

• … by exposing you to powerful new languages and programming 
constructs

• Demystify some of the magic

• Make you informed leaders who can influence technical decisions

• Change the way you think about computation

5



Course Outline

• 3 units, ~4—5 weeks each

• Functional programming in Ocaml

• Relational programming: Spreadsheets, SQL and logic programs

• Implementation details: Syntax, type systems, runtime (tail call 
optimization and garbage collection), unification and evaluation 
algorithms

6



History of Programming Languages

7

[Pascal Rigaux]

John McCarthy
1927—2011
Turing Award 1971

John Backus
1924—2007
Turing Award 1977

Robin Milner
1934—2010
Turing Award 1991OCaml



Why Functional Programming?

• Encourage immutability
Programs are easier to think about

• Algebraic data types and pattern matching
Elegant ways to construct and destruct data

• First-class functions
Functions can be passed around just like values

• Static type checking
Programs have fewer bugs

• Automatic type inference
Make the compiler work for you

• Parametric polymorphism
Can generalize computation across many types

• Garbage collection
Make the runtime work for you

• Modules
Elegant ways of structuring large systems

8



Functional Languages Predict the Future

• Garbage collection:
Lisp (1958) ➔ Python (1990), Java (1995)

• Parametric polymorphism / Generics / Templates:
ML (1975) ➔ C++ (1986), Java (2004)

• Higher-order functions:
Lisp (1958) ➔ C# (2007), C++ (2011), Java (2014)

• Type inference:
ML (1982) ➔ C++ (2011), Java (2011)

9



Functional Programming in Industry

• Ocaml: Jane Street, Bloomberg, Citrix

• Scala: Twitter, Foursquare, LinkedIn

• Haskell: Facebook, Barclays, AT&T

• Erlang: WhatsApp, Amazon, T-Mobile

10



Today’s Plan

• Motivation and Overview

• Course Logistics

• Diving into Ocaml

11



Classes and Office Hours

• Tuesdays and Thursdays
• 4pm—6pm Los Angeles time
• Will be recorded

• Website: https://r-mukund.github.io/teaching/fa2020-csci599/
• Zoom: https://usc.zoom.us/j/98960729161
• Piazza: https://piazza.com/usc/fall2020/csci599/home

• Office Hours: Mondays, 4pm—6pm, or by appointment
• Zoom: https://usc.zoom.us/j/95662027167

12



Evaluation

• 4 homework assignments × 15% each = 60%

• Midterm = 20%

• Final exam = 20%

• All homeworks and exams are take-home

• No collaboration / internet use during exams

• Welcome to collaborate with a partner on homeworks

• But! Identify your partner, write answers by yourselves

13



Course Staff

• Mukund Raghothaman

• PhD from UPenn, 2017

• Joined USC in Fall 2019

• Research Area: “How do we reason about programs?”

• Find bugs; prove correctness; synthesize code!

• Can data (i.e., GitHub) help?

• Can we use probabilities and / or machine learning?

14



Tell Me About Yourselves

• Name, program

• Background in programming

• Languages you have used + Familiarity

• Any functional languages?

• Have you heard of monads, categories, lambda (calculus)?

• This course will not require or cover any of these

☺

15



Today’s Plan

• Motivation and Overview

• Course Logistics

• Diving into Ocaml

16



What’s the Difference Between …?

17



18


