
let rec allEven l =
 match l with
 | [] -> []
 | hd :: tl -> if hd mod 2 = 0 then hd :: allEven tl else allEven tl

let rec allBig l =
 match l with
 | [] -> []
 | hd :: tl -> if hd > 50 then hd :: allBig tl else allBig tl

 let rec allPrimes l =
 match l with
 | [] -> []
 | hd :: tl -> if isPrime hd then hd :: allPrimes tl else allPrimes tl

let isPrime n =
 let rec helper cnt = if cnt = 1 then true else if n mod cnt = 0 then false else helper (cnt - 1) in
 helper (n - 1)

let rec filter f l =
 match l with
 | [] -> []
 | hd :: tl -> if f hd then hd :: filter f tl else filter f tl

 let rec doubleAll l =
 match l with
 | [] -> []
 | hd :: tl -> (2 * hd) :: doubleAll tl

 let rec downloadAll l =
 match l with
 | [] -> []
 | hd :: tl -> let u = download hd in u :: downloadAll tl

 let rec downloadAll l =
 match l with
 | [] -> []
 | hd :: tl -> (download hd) :: downloadAll tl

let download url = print_endline ("Downloaded " ^ url)

 let rec map f l =
 match l with
 | [] -> []
 | hd :: tl -> (f hd) :: map f tl

let doubleAll l = map double l

let downloadAll l = map download l

 9 l = [1, 2, 3, 4, 5]
 10 ans = []
 11 for x in l:
 12 ans.append(f(x))

