
let rec sum n = if n = 0 then 0 else n + sum (n - 1)

let rec helper acc n = if n = 0 then acc else helper (n + acc) (n - 1)

let rec sum n = if n = 0 then 0 else n + sum (n - 1)

let goodSum n =
 let rec helper acc n = if n = 0 then acc else helper (n + acc) (n - 1) in
 helper 0 n

let rec badRev l =
 match l with
 | [] -> []
 | hd :: tl -> (badRev tl) @ [hd]

let goodRev l =
 let rec helper acc l =
 match l with
 | [] -> acc
 | hd :: tl -> helper (hd :: acc) tl in
 helper [] l

