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About This Course

* We'll study several different programming languages
* What languages do you know?

 What makes them different?



About This Course

* What is a programming language?
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About This Course

* Why so many languages
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Why So Many Languages:

* Different languages for different tasks
* Verilog for describing hardware
* Assembly for low-level computations
* JavaScript for manipulating the DOM

* Question: How might one program
a quantum computer?




Why Study Programming Languages?

* Linguistic Relativity: Structure of a language affects the speaker’s thought

* Radiolab podcast on colors in ancient texts:
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Why Study Programming Languages?

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM'’s copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author’s address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78,/0800-0613 $00.75
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Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978
of Volume 21
the ACM Number 8



Our Goals in this Course

* Make you better programmers ...

* ... by exposing you to powerful new languages and programming
constructs

* Demystify some of the magic hOWS'l'U'F'ngrI(S

* Make you informed leaders who can influence technical decisions
* Change the way you think about computation



Ideas to Take Away

N N

Unit 1
Functional Programming

Immutable data
First-class functions
Static types

Pattern matching

1.
2.

3.

Unit 2
Language Implementation

Processing syntax
Typeinference
Garbage collection

1.
2.

3.

Unit 3
Relational Programming
Spreadsheets and DAGs

Declarative languages
Recursive queries




History of Programming Languages
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John McCarthy John Backus
1927—2011 1924—2007
Turing Award 1971 Turing Award 1977

Robin Milner
1934—2010
Turing Award 1991
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Why Functional Programming?

Encourage immutability
Programs are easier to think about

Algebraic data types and pattern matchin%
Elegant ways to construct and destruct data

First-class functions . .
Functions can be passed around just like values

Static type checking
Programs have fewer bugs

Automatic type inference
Make the compiler work for you

Parametric polymorphism
Can generalize computation across many types

Garbage collection
Make the runtime work for you

Modules .
Elegant ways of structuring large systems
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Functional Influences on Programming Practice

* Garbage collection:
Lisp (1958) — Python (1990), Java (1995)

* Parametric polymorphism [/ Generics /| Templates:
ML (1975) = C++ (1986), Java (2004)

* Higher-order functions;
Lisp (1958) — (# (2007), C++ (2011), Java (2014)

. TyEe inference:
ML (1982) = C++ (2011), Java (2011), TypeScript (2012)

* Linear and affine types, resource ownership:
Linear logic (1987) — Cyclone (2002) = C++ unique_ptr (2011), Rust (2006)
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Functional Programming in Industry

* OCaml: Jane Street, Bloomberg, Citrix
* Scala: X [ Twitter, Foursquare, LinkedIn
* Haskell: Facebook, Barclays, AT&T

* Erlang: WhatsApp, Amazon, T-Mobile

* See StackOverflow Developer Survey for
economic motivation %

* More recently: Lean + Mathlib, AlphaProof

13



Today’s Plan

* Motivation and Overview
* Course Logistics
* Diving into OCaml
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Textbooks

* Yaron Minsky, Anil Madhavapeddy, and Jason Hickey
Real World OCaml

* Michael Clarkson
OCaml Programming: Correct + Efficient + Beautiful

* Harold Abelson, Gerald Jay Sussman, and Julie Sussman
Structure and Interpretation of Computer Programs

* All books are open access



Classes and Office Hours

* Tuesdays and Thursdays
* 4pm—>5:50pm Los Angeles time
* Will be streamed over Zoom, recorded*

* Website: https://r-mukund.github.io/teaching/fa2025-csci431/

* Office Hours:
* Thursdays, 1:30pm—3:30pm
* Or by appointment
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Assessment (1)

* 3 homework assignments x 17% each = 50%

* 2 quizzes and 1 final exam, 17% each = 50%
* You are allowed to consult one handwritten letter paper-sized crib sheet

Welcome to collaborate with a partner on homeworks

But! Identify your partner, write answers by yourselves

GPT / LLM policy
* Welcome to use
* But... (1) clearly reflect on why you used it (or not). And how it was helpful. Tell us
* That said, (2) this policy is experimental. Subject to change at any time
* (3) No technology access during quizzes or exams
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Assessment (2)

* HWo is posted to Brightspace
* Not graded
* Due at 10pm, Monday, 1 September 2025

* Going forward...

* Assignments due 10pm on Monday after unit is complete
* Reference solutions will be posted on Wednesday at 2pm
* Submissions after reference solutions are posted will not be graded

* Talk to me in advance if you are unable to submit an assignment on time
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Accommodations

* Talk to meif you:
* are unable to submit an assignment on time,
* are finding it difficult to keep up,
* need any help to make the most of this course, or
* want to bring anything to my attention
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About Me

* Mukund Raghothaman
 PhD from UPenn, 2017
* Joined USCin Fall 2019

* Research Area: “How do we reason about programs?”
* Find bugs; prove correctness; synthesize code!

 Can data (i.e., GitHub) help?

* Can we use probabilities and / or machine learning?
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Tell Us About Yourselves

* Name, program
* Background in programming
* Languages you have used + Familiarity



For Next Class

* Install OCaml on your computers
 Start work on Homework o, due 10pm, Monday, 1 September

* Reading:
* RWO, Chapter 1: Guided Tour
* MC, Chapters 1, 2
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