CSClI 431: Principles of Functional
Programming

Welcome and Introduction
Mukund Raghothaman
Fall 2025

About This Course

* We'll study several different programming languages
* What languages do you know?

 What makes them different?

About This Course

* What is a programming language?

% ONLYOFFICE File Home Insert Plugins ONLYOFFICE Sample Spreadsheet xisx Sat =
=) I BIEFRENIPN (V) ¥ 2R VR 11 General - W Sl B
B/ usa-a-0-8- H @ T % ® -2 2 W J B &
a oA .
Q B c D E F 3 H J K L
= (3002016 Total Medal
k 140
= QY
1
P
Rank Country Gold Silver Bronze Total
@ 2
s 1 |usa 46 37 38 121
4 2 |Great Britain 27 23 17 67
s 3 |China 26 18 26 70
s 4 |Russia 19 18 19 56
75 |Germany 17 10 15 4z
8 6 Japan 12 8 21 41
s 7 |France 10 18 14 42 KRR S P RO S D
S P B L O P TS
1o__8 |South Korea 9 3 9 21 20 oS ‘5';\»%9&% T
19 |italy 8 12 8 28 < E <
1210 |Australia 8 11 10 29 Countries
13 11 |Netherlands 8 7 4 19
14 12 |Hungary 8 3 4 15
15__13 |Braail 7 5 6 19 Gold&Silver Medals Cour
1614 |spain 7 4 6 17 %
17__15 |Kenya 6 6 1 13 . 5
& 16 |Jamaica 6 3 Z 11 £ gﬁ A
19 17 Croatia 5] 3 2 10 2 ol —
(® Sheett (D zoom100% (%)

About This Course

* Why so many languages

Data structures only

S-expression

°\J

Turing complete

Observable

[= ==
Yes_No |

0z, Alice, Curry

-

+ procedure

e
Scheme, ML

Scheme, ML,

Haskell, ML, E

(unforgeable constany

pramming
CLU,0Caml, 0z

+ single assig + nondeterministic + port
2 "} choice. {ehannel)
1 “Nonmonotonic ‘Multi-agent
dataflow datalowe
programming rammi
‘Concurrent logic 0z, Alice, AKL
progrmming

+ thre
+ single assi

cduce

LIFE, AKL

-+ by-need synchronization

«
programming

Oz, Alie, Curry, Excel,
AKL.FGHC, FCP
-+ synch. on partial termination

Functional

programming (FRP)

reactive

‘Continuous synchronous
programming

|

FrTime, Yampa,

+ clocked computation

0z, Alice, Curry

Functional

Less.

Unnamed state (seq. or conc.)
1

Diserete synchronous
amming

+ cell (state)

Message-passing
concurrent

progrumming

lErlang. KL

+ local cell

‘Active object
programming

‘Object—capability
programming

CSP, Oceam,
E, Oz, Alice,
publish/subscribe,
tple space (Linda)

Message passing

programmi
SNOBOL, Icon, Prolog

Pascal,C

+ search

Smalltalk, Oz,
Java, Alice

+ log

SQL embeddings

Shared state

progr:
Esterel, Lusire, Signal Dataflow and
message passing
Nondet. state

Named state
|

More

Expressiveness of state

Why So Many Languages:

* Different languages for different tasks
* Verilog for describing hardware
* Assembly for low-level computations
* JavaScript for manipulating the DOM

* Question: How might one program
a quantum computer?

Why Study Programming Languages?

* Linguistic Relativity: Structure of a language affects the speaker’s thought

* Radiolab podcast on colors in ancient texts:

https://radiolab.org/episodes/211213-sky-isnt-blue 5. W
jHROUGHW

N
THE LANGUA%E

* “A language that doesn't affect A 7

the Way yOU think abOUt programming’ bIFFERENTMINOTHER

LANGU ES
=

is not worth knowing.”
F

-— Alan Perlis, Epigrams on Programming
WV

GUY DEUTSCHER

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

lelelelele

https://radiolab.org/episodes/211213-sky-isnt-blue
https://radiolab.org/episodes/211213-sky-isnt-blue
https://radiolab.org/episodes/211213-sky-isnt-blue
https://radiolab.org/episodes/211213-sky-isnt-blue
https://radiolab.org/episodes/211213-sky-isnt-blue
https://radiolab.org/episodes/211213-sky-isnt-blue
https://radiolab.org/episodes/211213-sky-isnt-blue

Why Study Programming Languages?

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM'’s copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author’s address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78,/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978
of Volume 21
the ACM Number 8

Our Goals in this Course

* Make you better programmers ...

* ... by exposing you to powerful new languages and programming
constructs

* Demystify some of the magic hOWS'l'U'F'ngrI(S

* Make you informed leaders who can influence technical decisions
* Change the way you think about computation

Ideas to Take Away

N N

Unit 1
Functional Programming

Immutable data
First-class functions
Static types

Pattern matching

1.
2.

3.

Unit 2
Language Implementation

Processing syntax
Typeinference
Garbage collection

1.
2.

3.

Unit 3
Relational Programming
Spreadsheets and DAGs

Declarative languages
Recursive queries

History of Programming Languages

sssss

Z . %4 (?:;
John McCarthy John Backus
1927—2011 1924—2007
Turing Award 1971 Turing Award 1977

Robin Milner
1934—2010
Turing Award 1991

10

Why Functional Programming?

Encourage immutability
Programs are easier to think about

Algebraic data types and pattern matchin%
Elegant ways to construct and destruct data

First-class functions . .
Functions can be passed around just like values

Static type checking
Programs have fewer bugs

Automatic type inference
Make the compiler work for you

Parametric polymorphism
Can generalize computation across many types

Garbage collection
Make the runtime work for you

Modules .
Elegant ways of structuring large systems

11

Functional Influences on Programming Practice

* Garbage collection:
Lisp (1958) — Python (1990), Java (1995)

* Parametric polymorphism [/ Generics /| Templates:
ML (1975) = C++ (1986), Java (2004)

* Higher-order functions;
Lisp (1958) — (# (2007), C++ (2011), Java (2014)

. TyEe inference:
ML (1982) = C++ (2011), Java (2011), TypeScript (2012)

* Linear and affine types, resource ownership:
Linear logic (1987) — Cyclone (2002) = C++ unique_ptr (2011), Rust (2006)

12

Functional Programming in Industry

* OCaml: Jane Street, Bloomberg, Citrix
* Scala: X [Twitter, Foursquare, LinkedIn
* Haskell: Facebook, Barclays, AT&T

* Erlang: WhatsApp, Amazon, T-Mobile

* See StackOverflow Developer Survey for
economic motivation %

* More recently: Lean + Mathlib, AlphaProof

13

Today’s Plan

* Motivation and Overview
* Course Logistics
* Diving into OCaml

14

Textbooks

* Yaron Minsky, Anil Madhavapeddy, and Jason Hickey
Real World OCaml

* Michael Clarkson
OCaml Programming: Correct + Efficient + Beautiful

* Harold Abelson, Gerald Jay Sussman, and Julie Sussman
Structure and Interpretation of Computer Programs

* All books are open access

Classes and Office Hours

* Tuesdays and Thursdays
* 4pm—>5:50pm Los Angeles time
* Will be streamed over Zoom, recorded*

* Website: https://r-mukund.github.io/teaching/fa2025-csci431/

* Office Hours:
* Thursdays, 1:30pm—3:30pm
* Or by appointment

16

Assessment (1)

* 3 homework assignments x 17% each = 50%

* 2 quizzes and 1 final exam, 17% each = 50%
* You are allowed to consult one handwritten letter paper-sized crib sheet

Welcome to collaborate with a partner on homeworks

But! Identify your partner, write answers by yourselves

GPT / LLM policy
* Welcome to use
* But... (1) clearly reflect on why you used it (or not). And how it was helpful. Tell us
* That said, (2) this policy is experimental. Subject to change at any time
* (3) No technology access during quizzes or exams

17

Assessment (2)

* HWo is posted to Brightspace
* Not graded
* Due at 10pm, Monday, 1 September 2025

* Going forward...

* Assignments due 10pm on Monday after unit is complete
* Reference solutions will be posted on Wednesday at 2pm
* Submissions after reference solutions are posted will not be graded

* Talk to me in advance if you are unable to submit an assignment on time

18

Accommodations

* Talk to meif you:
* are unable to submit an assignment on time,
* are finding it difficult to keep up,
* need any help to make the most of this course, or
* want to bring anything to my attention

19

About Me

* Mukund Raghothaman
 PhD from UPenn, 2017
* Joined USCin Fall 2019

* Research Area: “How do we reason about programs?”
* Find bugs; prove correctness; synthesize code!

 Can data (i.e., GitHub) help?

* Can we use probabilities and / or machine learning?

20

Tell Us About Yourselves

* Name, program
* Background in programming
* Languages you have used + Familiarity

For Next Class

* Install OCaml on your computers
 Start work on Homework o, due 10pm, Monday, 1 September

* Reading:
* RWO, Chapter 1: Guided Tour
* MC, Chapters 1, 2

22

	Default Section
	Slide 1: CSCI 431: Principles of Functional Programming

	Motivation and Overview
	Slide 2: About This Course
	Slide 3: About This Course
	Slide 4: About This Course
	Slide 5: Why So Many Languages?
	Slide 6: Why Study Programming Languages?
	Slide 7: Why Study Programming Languages?
	Slide 8: Our Goals in this Course
	Slide 9: Ideas to Take Away
	Slide 10: History of Programming Languages
	Slide 11: Why Functional Programming?
	Slide 12: Functional Influences on Programming Practice
	Slide 13: Functional Programming in Industry

	Course Logistics
	Slide 14: Today’s Plan
	Slide 15: Textbooks
	Slide 16: Classes and Office Hours
	Slide 17: Assessment (1)
	Slide 18: Assessment (2)
	Slide 19: Accommodations
	Slide 20: About Me
	Slide 21: Tell Us About Yourselves

	For Next Class
	Slide 22: For Next Class

