
CSCI 699: Computer-Aided Verification

Mukund Raghothaman

Course Introduction

https://r-mukund.github.io/teaching/sp2020-csci699/

1

https://r-mukund.github.io/teaching/sp2020-csci699/


Expanding Scope and Complexity of Software

Apps on the App Store Linux Kernel SLOC Rate of CVEs being reported

2



Increasing Adoption of Formal Verification Tools by Industry

3



Overarching Questions of this Course

I How do we reason about code?

I How do we prove that they never go wrong?

I How do we prove that they eventually do good?

I How do we automate this reasoning process?

I Can we synthesize artifacts other than proofs? Code, itself?

I How do we best help programmers write code?

4



Code, as Broadly Construed
Or why you should take this course…

I Traditional programs

I Neural networks

I Network controllers

I Controllers for cyber-physical systems

I Biological models of cells

5



Goals of this Course

’

I Introduce you to the art and science of program verification

I Provide exposure to using practical verification tools

I Open them up and study their inner workings

I Expose you to cutting edge research in the field

6



Outline of Today’s Lecture

Motivation

Course Outline

Logistics

7



Part 1: Techniques of Proof

I What is the state of a program, and how does it evolve?

I How do we show that bad states are never reached?

I How do we show that good states are eventually reached?

I Going from test cases to symbolic execution to proofs

8



Part 1: Techniques of Proof

I What is the state of a program, and how does it evolve?

I How do we show that bad states are never reached?

I How do we show that good states are eventually reached?

I Going from test cases to symbolic execution to proofs

8



Part 1: Techniques of Proof

I What is the state of a program, and how does it evolve?

I How do we show that bad states are never reached?

I How do we show that good states are eventually reached?

I Going from test cases to symbolic execution to proofs

8



Part 2: Engines of Reason

I Propositional logic

a and (¬a or b or c)

I Satisfiability: Is an erroneous path feasible?

I Canonical NP-complete problem

I Massive progress in practical SAT solvers
Figure: Credit: Sanjit Seshia

9



Part 2: Engines of Reason

I Formulas over theories

x ≥ 10 and (x 6≥ 10 or x ≤ 5 or y > 8)

I Programs operate with data

I Verification conditions combine Boolean structure (∧ and ∨) with rich theories

(integers, floating point numbers, arrays, heaps)

I Satisfiability,modulo theory

10



Part 3: Abstract Interpretation

I How do we soundly abstract the behaviors of programs?

I Focus on specific parts of the program behavior

I Flow of values through the program
I Range of values taken by a variable
I Locks held at a program point

I Widely applicable framework. Examples:

I Neural network certification (Gehr et al., SP 2018)
I Verifying computer networks (Alpernas et al., SAS 2018)

11



Part 4: Program Synthesis

Verifier ProofProgram

Specification

Synthesizer ProofProgram

Specification

I Repurpose the constraint solving machinery of Part 2 to synthesize programs

I The holy grail: Systems that are correct-by-construction

I Question 1: How do users specify their intent?

I Question 2: How do we do synthesis?

I Exciting research area over the last 10 years

I Deep connections to AI and machine learning

12



Outline of Today’s Lecture

Motivation

Course Outline

Logistics

13



Grading

I Homework assignment associated with each unit (four in all)

I Class project

I All graded equally

14



Readings

Static Program Analysis

Anders Møller and Michael I. Schwartzbach

December 16, 2019

I Will be assigned for each part

I Freely accessible from within the USC network

15



Class Project

I Either alone or in pairs

I Submit proposal by February 19

I Describe problem, state deliverables, propose grading rubric

I Class presentations on April 22 and 27

I Final report by May 6

16



Class Project

I Set up meeting with instructor to discuss project topics

I Research project

I Pick a research problem, devise possible solutions, write research paper
I Ideally related to your own PhD research

I Survey project

I Write a comprehensive survey on a research area

I Reimplementation project

I Pick research paper (not your own), and reimplement the proposed techniques
I Summarize experience

17



Logistics

I Class timings: Mondays and Wednesdays, 5–6:50pm, GFS 220

I Expected breakdown:

I First 5 minutes: Recap of previous lecture, outline of present lecture, announcements
I Last 10 minutes: Optional questions and discussion
I 5 minute break at 6pm

I Office hours: Fridays, 3–5pm, SAL 308, or by appointment

I Course website: https://r-mukund.github.io/teaching/sp2020-csci699/
I Watch website regularly for announcements and updates

18

https://r-mukund.github.io/teaching/sp2020-csci699/


Introductions…

I Mukund Raghothaman

I New Assistant Professor (joined in August 2019)

I PhD and postdoc from the University of Pennsylvania

I Research in program verification and synthesis

I Applications of machine learning and probabilistic methods

19



Introductions…

I What is your background?

I Why do you feel like taking this course?

I What do you expect to get out of it?

I Previous experience in software engineering / programming languages?

20


	Motivation
	Course Outline
	Logistics

