CSCl 699: Computer-Aided Verification

Mukund Raghothaman

Course Introduction

https://r-mukund.github.io/teaching/sp2020-csci699/

USCYiterbi



https://r-mukund.github.io/teaching/sp2020-csci699/

Expanding Scope and Complexity of Software

ol il

Apps on the App Store Linux Kernel SLOC Rate of CVEs being reported

ot | @ B




Increasing Adoption of Formal Verification Tools by Industry

sonarqube | @ coverity®

SonarSource Synopsis

Uber Engnee Q
aws B -
N ) Engineering NullAway, Uber’s Open
Infer Source Tool for Detecting

NullPointerExceptions on Android

Amazon Facebook Uber

Astrée SWAM

Airbus Microsoft




Overarching Questions of this Course

vVvvyVvVvyy

How do we reason about code?

How do we prove that they never go wrong?

How do we prove that they eventually do good?

How do we automate this reasoning process?

Can we synthesize artifacts other than proofs? Code, itself?

How do we best help programmers write code?



Code, as Broadly Construed

Or why you should take this course ...

» Traditional programs

» Neural networks

> Network controllers

» Controllers for cyber-physical systems
> Biological models of cells



Goals of this Course

» Introduce you to the art and science of program verification
» Provide exposure to using practical verification tools

» Open them up and study their inner workings

> Expose you to cutting edge research in the field



Outline of Today’s Lecture

Course Outline



Part 1: Techniques of Proof

> What is the state of a program, and how does it evolve?

» How do we show that bad states are never reached?

» How do we show that good states are eventually reached?
» Going from test cases to symbolic execution to proofs



Part 1: Techniques of Proof

> What is the state of a program, and how does it evolve?

» How do we show that bad states are never reached?

» How do we show that good states are eventually reached?
» Going from test cases to symbolic execution to proofs

Bad states

Initial state

Good states




Part 1: Techniques of Proof

> What is the state of a program, and how does it evolve?

» How do we show that bad states are never reached?

» How do we show that good states are eventually reached?
» Going from test cases to symbolic execution to proofs

Bad states

Inductive
Initial state invariant

Good states




Part 2: Engines of Reason

» Propositional logic
a and (—a or b or ¢)

> Satisfiability: Is an erroneous path feasible?
» Canonical NP-complete problem
» Massive progress in practical SAT solvers

‘Speed-up of 2012 solver over other solvers

NS
FFS G &S & & & &
A A G A &
& R R
< o o

«

Sotver

Figure: Credit: Sanjit Seshia



Part 2: Engines of Reason

» Formulas over theories
x>10 and (x 210 or x <5 or y > 8)

» Programs operate with data

» Verification conditions combine Boolean structure (A and V) with rich theories
(integers, floating point numbers, arrays, heaps)

> Satisfiability, modulo theory

10



Part 3: Abstract Interpretation

» How do we soundly abstract the behaviors of programs?
» Focus on specific parts of the program behavior

> Flow of values through the program

> Range of values taken by a variable

»> Locks held at a program point
» Widely applicable framework. Examples:

> Neural network certification (Gehr et al., SP 2018)
> Verifying computer networks (Alpernas et al., SAS 2018)

1



Part 4: Program Synthesis

Specification

|

Program — Verifier

— Proof

Specification

|

Program <—

Synthesizer

— Proof

Repurpose the constraint solving machinery of Part 2 to synthesize programs

The holy grail: Systems that are correct-by-construction

Question 1: How do users specify their intent?

Question 2: How do we do synthesis?

Exciting research area over the last 10 years

Deep connections to Al and machine learning

12



Outline of Today’s Lecture

Logistics

13



Grading

» Homework assignment associated with each unit (four in all)
» Class project
> All graded equally

14



Readings

Daniel Kroening
Ofer Strichman

Static Program Analysis

Decision e =
Procedures

The Calculus

of Computation

Second Edition

> Will be assigned for each part
> Freely accessible from within the USC network

15



Class Project

> Either alone orin pairs
» Submit proposal by February 19
» Describe problem, state deliverables, propose grading rubric

» Class presentations on April 22 and 27
P Final report by May 6

16



Class Project

» Set up meeting with instructor to discuss project topics
» Research project

> Pick aresearch problem, devise possible solutions, write research paper
» Ideally related to your own PhD research

» Survey project
> Write a comprehensive survey on a research area
P> Reimplementation project

» Pick research paper (not your own), and reimplement the proposed techniques
» Summarize experience

17



Logistics

» Class timings: Mondays and Wednesdays, 5-6:50pm, GFS 220
Expected breakdown:

> First 5 minutes: Recap of previous lecture, outline of present lecture, announcements
» Last 10 minutes: Optional questions and discussion
» 5 minute break at 6pm

v

» Office hours: Fridays, 3-5pm, SAL 308, or by appointment

v

Course website: https://r-mukund.github.io/teaching/sp2020-csci699/

v

Watch website regularly for announcements and updates

18


https://r-mukund.github.io/teaching/sp2020-csci699/

Introductions ...

vVvyVvyyvyy

Mukund Raghothaman

New Assistant Professor (joined in August 2019)

PhD and postdoc from the University of Pennsylvania
Research in program verification and synthesis
Applications of machine learning and probabilistic methods

19



Introductions ...

> What is your background?
» Why do you feel like taking this course?
> What do you expect to get out of it?

> Previous experience in software engineering / programming languages?

20



	Motivation
	Course Outline
	Logistics

