
Revised December 2020

CSCI 625: Program Synthesis and Computer-
Aided Verification
Units: 4
Spring 2023—Mondays and Wednesdays—3:30—5:20pm
THH 213

https://r-mukund.github.io/teaching/sp2023-csci625/

Instructor: Mukund Raghothaman
Office: SAL 308

Contact Info:
Http: https://r-mukund.github.io
Email: raghotha@usc.edu

CSCI 625: Program Synthesis and Computer-Aided Verification 2

Course Description
How does a programmer convince their colleagues that a piece of code does what was intended? How
do they find bugs in the software they ship? And can the tools used for these activities also help in
developing code that is correct, by construction?

This course will equip the student to answer these questions, and serve as an introduction to the
principles and practices of software verification and program synthesis. We will study fundamental ideas
such as symbolic execution, invariants, and abstract interpretation. We will also study how constraint
solvers work, how they can be used to reason about code, and how they can be used as the building
blocks of sophisticated program synthesis systems.

The course will cover both the theory underlying the design of these tools and their use in practice.
Furthermore, by studying their application in areas such as networking and security, we will emphasize
their relevance to the working computer scientist.

Learning Objectives
After this course, the successful student will be able to:

1. Prove properties of simple programs by devising appropriate invariants and ranking functions
2. Use constraint solvers to solve various problems
3. Explain the operation of modern constraint solvers, including unit propagation, back-tracking,

clause learning, and theory combination
4. Explain the ideas behind abstract interpretation, including specific instantiations such as

predicate abstraction and dataflow analyses
5. Implement simple static analyses for a tiny imperative programming language
6. Use and explain the operation of CEGIS-based program synthesizers

Prerequisites
1. The course will expect a certain amount of mathematical maturity from its students, at least at

the level of CSCI 170, and preferably at the level of CSCI 270.
2. We will be reasoning about code: we expect that the student will already be proficient in writing

it. CSCI 301, CSCI 350, and similar courses are appropriate baselines

Required Readings
We will assign readings from the following sources:

1. Michael Gordon. Background Reading on Hoare Logic. 2016.
Accessible from https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf.

2. Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point of View. 2nd
edition. Springer, 2016.
The book may be accessed freely from within USC at http://link.springer.com/978-3-662-50497-
0. Supplementary material is available at http://www.decision-procedures.org/.

CSCI 625: Program Synthesis and Computer-Aided Verification 3

3. Anders Møller and Michael Schwartzbach. Static Program Analysis. Department of Computer
Science, Aarhus University. 2018.
Accessible from http://cs.au.dk/~amoeller/spa/.

4. Susan Horwitz. Abstract Interpretation. 2013.
Accessible from http://pages.cs.wisc.edu/~horwitz/CS704-NOTES/10.ABSTRACT-
INTERPRETATION.html.

5. Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program Synthesis. Foundations and
Trends in Programming Languages, 2017.
Accessible from https://ieeexplore.ieee.org/document/8187066.

We will be supplementing this material with recent research papers.

Description and Assessment of Assignments
1. There will be four homework assignments. Each assignment will include a theoretical

component to assess conceptual understanding and a practical component to provide familiarity
with using verification and synthesis tools on real programs. Homeworks will be done
independently.

2. Students will complete a small research project over the course of the semester. This project
can be done either individually or in groups of two. They can either:

a. Find a new application of the verification and synthesis techniques presented in class, or
b. select a recent research paper and reimplement its algorithm.

At the end of the semester, they will submit a report and present their findings to the class.

Students are strongly encouraged to consult the instructor while selecting an appropriate
research project. In addition to the initial project proposal and final project report and
presentation, it is recommended that they regularly update the instructor with their progress,
both over email and during office hours.

Grading Breakdown

Assessment Tool (assignments) Points % of Grade
Assignment 1 100 20
Assignment 2 100 20
Assignment 3 100 20
Assignment 4 100 20
Research project 100 20
TOTAL 500 100

CSCI 625: Program Synthesis and Computer-Aided Verification 4

Course Schedule
Unit 1: Reasoning Engines
Reading: Chapters 2, 3 and 4 of (Kroening and Strichman, 2016).
Lab: Solving puzzles such as Sudoku, Kakuro, Numberlink and Slitherlink using Z3

Week 1 • Course introduction, motivation, logistics
• Propositional logic, satisfiability, and validity

Week 2 • Basics of SAT solvers: DPLL, unit propagation, solving Horn-SAT in polynomial time
• Solving 2-SAT in polynomial time

Week 3 • Conflict-driven clause learning
• Introduction to SMT: The DPLL(T) procedure

Week 4 • Theory solvers: Difference logic, real arithmetic, uninterpreted functions
• Combining theories using the Nelson-Oppen procedure

Unit 2: Program Synthesis
Reading: (Gulwani, Polozov and Singh, 2017)
Lab: Synthesizing program invariants using SyGuS

Week 5 • Specifying user intent and syntactic bias
• The Syntax-Guided Synthesis framework (SyGuS)

Week 6 • Version spaces
• Counter-example guided inductive synthesis (CEGIS)

Week 7 • Instantiations of the CEGIS method: Enumerative, stochastic, and symbolic
synthesis

Unit 3: Proof Techniques
Reading: Chapters 1, 2 and 5 of (Gordon, 2016).
Lab: Verifying simple programs using the Boogie IVL

Week 8 • The verification problem for a simple programming language
• Symbolic execution

Week 9 • Inductive invariants, verification conditions, and program correctness
• Automatic invariant generation

Week 10 • Proving program termination

Unit 4: Static Analysis and Abstract Interpretation
Reading: Chapters 2, 5 and 9 of (Møller and Schwartzbach, 2018)

Week 11 • Predicate abstraction
Week 12 • Counter-example guided abstraction refinement
Week 13 • Fundamentals of dataflow analysis

CSCI 625: Program Synthesis and Computer-Aided Verification 5

Conclusion
Week 14 • Student project presentations
Week 15 • Course recap and research outlook

Potential Project Ideas
A small list of potential project ideas is attached below. Students are welcome to explore topics and
papers not from the list, as long as they are related to the topic of the course and contain a strong
research component. In any case, they are strongly encouraged to consult the instructor early and often,
and keep him updated on their progress.

1. Modeling the heap. The toy programming languages used in the course will exclude pointers
and dynamically allocated data (provided by the library functions malloc and free, and keywords
new and delete). This limitation is not only pedagogical, as accurately describing the effects of
these functions is an important research challenge in the field. Separation logic (O’Hearn et al.,
CSL 2001) is a particularly influential approach. One research project involves building solvers for
various fragments of separation logic, such as that proposed by (Piskac et al., CAV 2014).

2. Relational verification. The view of verification taken in the course will mostly be whether each
execution of a program individually satisfies some property. Unfortunately, this fails to capture
many interesting program properties, including privacy (the output should not depend on some
sensitive feature of the input) and robustness (small changes in the input should only trigger
small changes in the output), where the property involves comparing the behavior of the
program on two close-but-distinct inputs. Students can build program verifiers for such hyper-
properties, basing their work on papers such as (Barthe et al., FM 2011).

3. Symbolic execution and concurrency. An important feature in the modern programming
landscape is concurrency, where the program is composed of multiple threads which coordinate
by mutating shared variables. Unfortunately, concurrent programs typically have a large number
of possible thread interleavings, and this non-determinism makes symbolic execution hard.
There is a wealth of research on analyzing such programs, for example (Wang et al., FSE 2009),
which could form the basis of the course project.

4. Min-UNSAT cores and maximum satisfiability. The central problem we address in module 2 of
the course is that of finding a satisfying assignment to a set of constraints. While a satisfying
assignment is evidently immediately useful, reports of unsatisfiability clearly raise further
questions. Users may wish to know: “Why was this problem instance unsatisfiable?”, or in
several applications, may wish to follow up with, “Can we maximize the number of satisfied
constraints?” These questions naturally point to the problems of finding UNSAT-cores and of
Max-SAT respectively. These problems are the topic of intense research, and students may wish
to use an existing SAT solver as a black box, and reproduce recent algorithms such as (Neves et
al., SAT 2015).

CSCI 625: Program Synthesis and Computer-Aided Verification 6

5. Randomly sampling solutions and model counting. One prominent assumption we make in our
discussion of SAT solvers is that we are content with arbitrary satisfying assignments. However,
in many cases, such as in the verification of probabilistic programs and several applications in
machine learning, this is insufficient, and users would like an algorithm which uniformly samples
from the set of satisfying assignments. The problem of random solution sampling is closely
related to the problem of finding the number of satisfying assignments to a given formula; this
latter problem is the famous prototype of the #P complexity class. As with the previous project
idea, students may use an existing SAT solver as a black box, and attempt to reproduce the
algorithms described in (Chakraborty et al., AAAI 2014) and related papers.

6. Algorithms for synthesis. Since the work on SyGuS, several new algorithms and frameworks
have been developed for program synthesis. One important example has been the approach to
combining top-down and bottom-up enumeration using a technique called unification (Alur et
al., TACAS 2017). Another important question has been the notion of quantitative cost
measures, such as the problem of finding the smallest or most high-performance solution. One
algorithm is presented in (Hu and D’Antoni, CAV 2018). A third direction of research is in using
learned syntactic features to accelerate the search for solution programs (Lee et al., PLDI 2018).
Any of these papers would form a good basis for a course project.

CSCI 625: Program Synthesis and Computer-Aided Verification 7

Statement on Academic Conduct and Support Systems
Academic Conduct:
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a
serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism
in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. Other
forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university
policies on scientific misconduct, policy.usc.edu/scientific-misconduct.

Support Systems:

Counseling and Mental Health - (213) 740-9355 – 24/7 on call
studenthealth.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling,
stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call
suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a
week.

Relationship and Sexual Violence Prevention and Services (RSVP) - (213) 740-9355(WELL), press “0” after hours –
24/7 on call
studenthealth.usc.edu/sexual-assault
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED)- (213) 740-5086 | Title IX – (213) 821-8298
equity.usc.edu, titleix.usc.edu
Information about how to get help or help someone affected by harassment or discrimination, rights of protected
classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants. The
university prohibits discrimination or harassment based on the following protected characteristics: race, color,
national origin, ancestry, religion, sex, gender, gender identity, gender expression, sexual orientation, age, physical
disability, medical condition, mental disability, marital status, pregnancy, veteran status, genetic information, and
any other characteristic which may be specified in applicable laws and governmental regulations. The university
also prohibits sexual assault, non-consensual sexual contact, sexual misconduct, intimate partner violence,
stalking, malicious dissuasion, retaliation, and violation of interim measures.

Reporting Incidents of Bias or Harassment - (213) 740-5086 or (213) 821-8298
usc-advocate.symplicity.com/care_report
Avenue to report incidents of bias, hate crimes, and microaggressions to the Office of Equity and Diversity |Title IX
for appropriate investigation, supportive measures, and response.

The Office of Disability Services and Programs - (213) 740-0776
dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing
readers/notetakers/interpreters, special accommodations for test taking needs, assistance with architectural
barriers, assistive technology, and support for individual needs.

USC Support and Advocacy - (213) 821-4710
uscsa.usc.edu
Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their
success as a student.

CSCI 625: Program Synthesis and Computer-Aided Verification 8

Diversity at USC - (213) 740-2101
diversity.usc.edu
Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity Liaisons for
each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in which
instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.

